

YAKAMA FOREST PRODUCTS

P.O. BOX 489 • 3191 WESLEY ROAD• WHITE SWAN WA 98952 (509) 874-3000 • FAX (509) 874-2183

"Respecting the Forest, Honoring the Past, Building the Future.

May 08, 2020

Kelly McFadden Air Permits and Toxics Branch USEPA Region 10 1200 Sixth Avenue, Suite 155 Seattle, WA 98101-3188

Re: Yakama Forest Products Title V Permit Renewal Application

To: Kelly McFadden,

Please find the enclosed Title V Permit Renewal Application for Yakama Forest Products. We hope that you and everyone there stay safe..

Sincerely:

Steve Rigdon General Manager

Yakama Forest Products

Yakama Forest Products White Swan, WA

40 CFR Part 71 Operating Permit No. R10T5120000

Renewal Application

May 2020 Version 1

Prepared by

Kelly McFadden Air Permits and Toxics Branch USEPA Region 10 1200 Sixth Avenue, Suite 155 Seattle, WA 98101-3188 Thomas R. Card, PE Environmental Management Consulting 41125 278th Way SE, Enumclaw, WA 98022 360-802-5540 trcard@earthlink.net

Contents

1.0	INTRODUCTION	1
2.0	APPLICABLE REGULATORY REQUIREMENTS	7
2	.1 APPLICABLE REQUIREMENTS	
2	FARR (40 CFR Part 49)	
	Boiler NSPS (40 CFR Part 60 Subpart Dc)	
	Plywood and Composite Wood Products MACT (40 CFR Part 63 Subpart DDDD)	
	Boiler NESHAP (40 CFR Part 63 Subpart DDDDD)	
_	Federal Operating Permit Program – 40 CFR Part 71	
2	.2 Non-Applicable Requirements	
	Chemical Accident Prevention Program (40 CFR Part 68)	
	Compliance Assurance Monitoring (40 CFR 64.2)	
	Tank NSPS (40 CFR Part 60 Subpart Kb)	8
3.0	INSIGNIFICANT SOURCES	9
4.0	EMISSIONS CALCULATIONS	9
В	OILERS	10
K	ILNS	10
V	VOOD BY-PRODUCT HANDLING AND STORAGE	10
	UGITIVE DUST	
4.0	ANNUAL FEES	. 11
5.0	COMPLIANCE HISTORY	.11
6.0	REQUESTED PERMIT REVISIONS	.13
D	ERMIT	13
	TATEMENT OF BASIS	
A	PPENDIX A	14

Tables

- Table 2.1 Calendar Year 2019 Actual Emissions and Current Potential to Emit
- Table 2.2 Summary of Fuel Tanks 38m3 or Larger
- Table 3.1 Inventory of All Fuel Tanks on Site (Except boiler fuel storage).

Figures

- Figure 1.1 Location and Layout of Large and Small Log Mills
- Figure 1.2 Small Log Mill Emission Source Locations
- Figure 1.3 Large Log Mill Emission Source Locations
- Figure 1.4 Small Log Mill Process Schematic
- Figure 1.5 Large Log Mill Process Schematic

Attachments

- 1. Part 71 Permit Application Forms
- 2. Fee Submittal Calculations (including emission estimates).
- 3. Maximum Kiln Production Tables

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A. Responsible Official	
Name: (Last) Rigdon (First) Steve	(MI)
Title General Manager	
Street or P.O. Box PO Box 489	
City White Swan State WA ZIP 9895	52
Telephone (509) 874 - 2901 Ext. 101 Facsimile (509)	874 - 8884
B. Certification of Truth, Accuracy and Completeness (to be signe responsible official)	d by the
I certify under penalty of law, based on information and belief formed a inquiry, the statements and information contained in these documents and complete.	
Name (signed)	
Name (typed) Mr Steve Rigdon Date: 05	10812020

Abbreviations

ASTM American Society for Testing and Materials

DC dry chips

CFR Code of Federal Regulations

CO carbon monoxide

EPA Environmental Protection Agency FARR Federal Air Rules for Reservations

GC green chips

HAP hazardous air pollutant as defined in 1990 Clean Air Act

HF hog fuel LLM large log mill

MACT Maximum Achievable Control Technology

MMBtu one million British Thermal Units

NESHAP National Emission Standards for Hazardous Air Pollutants

NOx nitrogen oxides

NSPS New Source Performance Standards

PM particulate matter
PM10 PM less than 10 micron
PM25 PM less than 2.5 micron
ppmw parts per million by weight
ppmv parts per million by volume

PTE Potential to Emit as defined in 1990 Clean Air Act

SD saw dust
SH shavings
SLM small log mill
SOx sulfur oxides

VOC volatile organic compounds YFP Yakama Forest Products

1.0 Introduction

Identifying information and description of the source's processes as required under Part 71 is provided in Attachment 1 on EPA forms GIS, EUD-1, EUD-3, EMISS PTE, IE, and ICOMP. The information below supplements the information provided on the forms.

Yakama Forest Products (YFP) is a tribal enterprise wholly owned by the Confederated Tribes and Bands of the Yakama Nation. It operates two sawmills in White Swan, Washington where it produces common boards, industrial shop lumber, and dimensional lumber from timber harvested from mostly tribal lands. The two mills are separated by a public road. The Small Log Mill (SLM) is located on the east side of the road and the Large Log Mill (LLM) is located on the west side of the road. EPA has determined that YFP must treat the two mills as a single source for regulatory applicability purposes.

The largest air emission sources are four boilers that support two separate dry kiln operations, the kilns, and the mill cutting/planing activities.

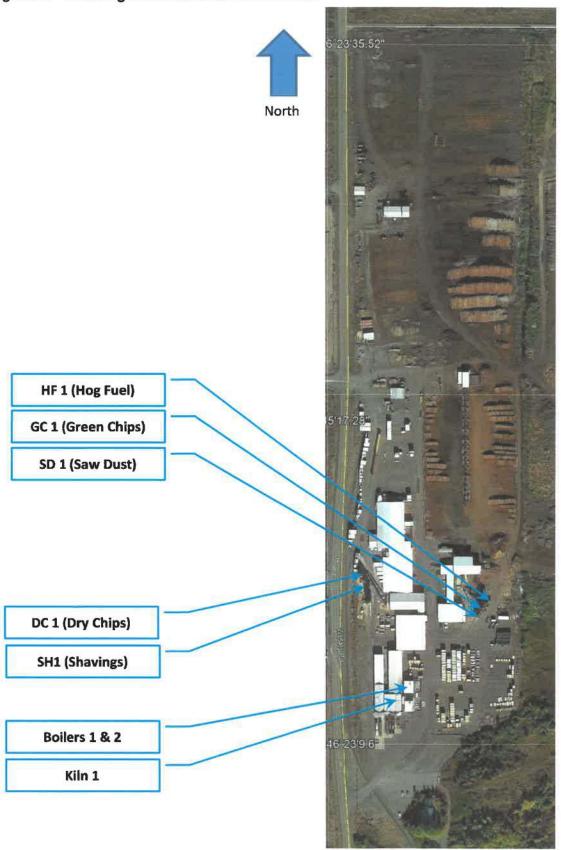
The Small Log Mill boilers are approximately 25 MMBtu/hr and the Large Log Mill boilers are nameplate rated to be 33 MMBtu/hr. The current permit identifies LLM boiler size as 29.1 MMBtu/hr, which was the level to which YFP derated the boilers to reduce NSPS oil firing requirements. The permit should, however, have taken into account the fact that at around the time it was prepared, YFP stopped oil firing altogether and switched to propane fuel, which required replacing the burners such that the boilers can no longer fire liquid fuel oil. The goal of reducing boiler capacity to below 30 mmBtu/hr, therefore, was made unnecessary by the fuel switch. Installing the new gaseous fuel burners was not intended to change the thermal capacity, but doing so did end up adjusting it upwards slightly. All the boilers are fueled exclusively using liquified petroleum gas (LPG) in conformance with the ASTM D 1835 HD 5 specification.

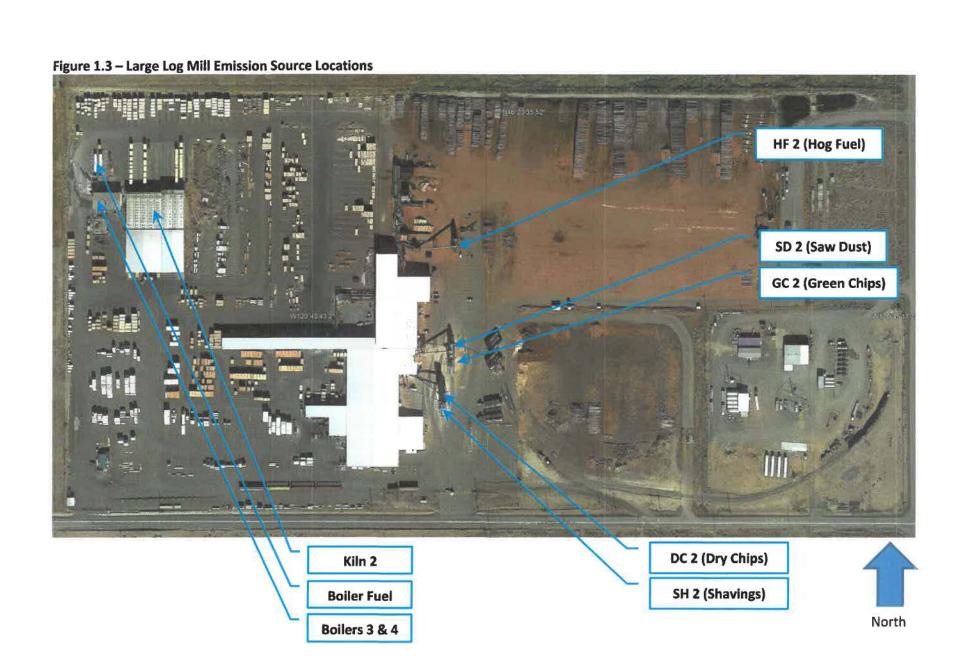
The kilns are also a large emission source, producing VOCs and air toxics that are released from the wood during drying operations.

The emissions from the mechanical aspects of the mill (sawing and planing) are limited to particulate, VOC and methanol emissions.

Figure 1.1 shows the layout of both mills. Figures 1.2 and 1.3 show the emissions sources for the Small Log Mill and the Large Log Mill respectively.

Figures 1.4 and 1.5 present process schematics for the Small and Large Log Mills respectively.


Section 6 of this renewal application narrative lists the requested specific revisions to the existing permit.


Large Log Mill

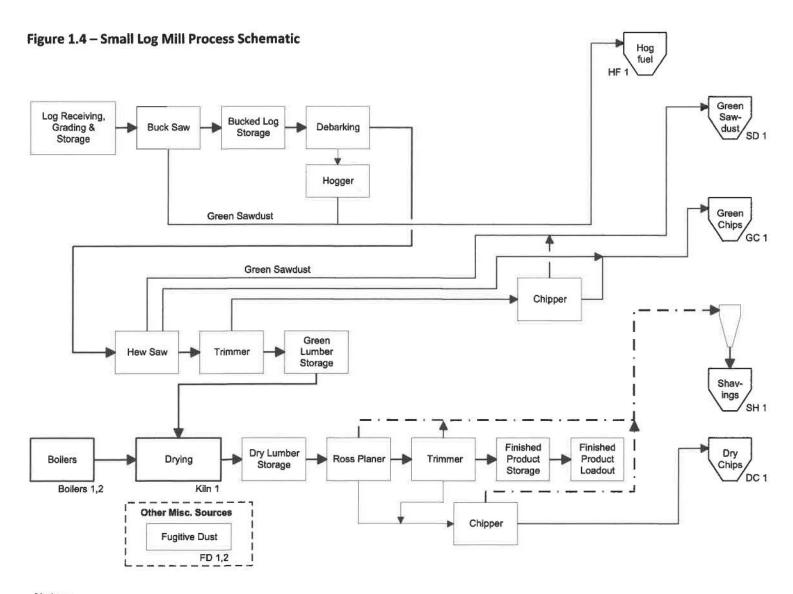
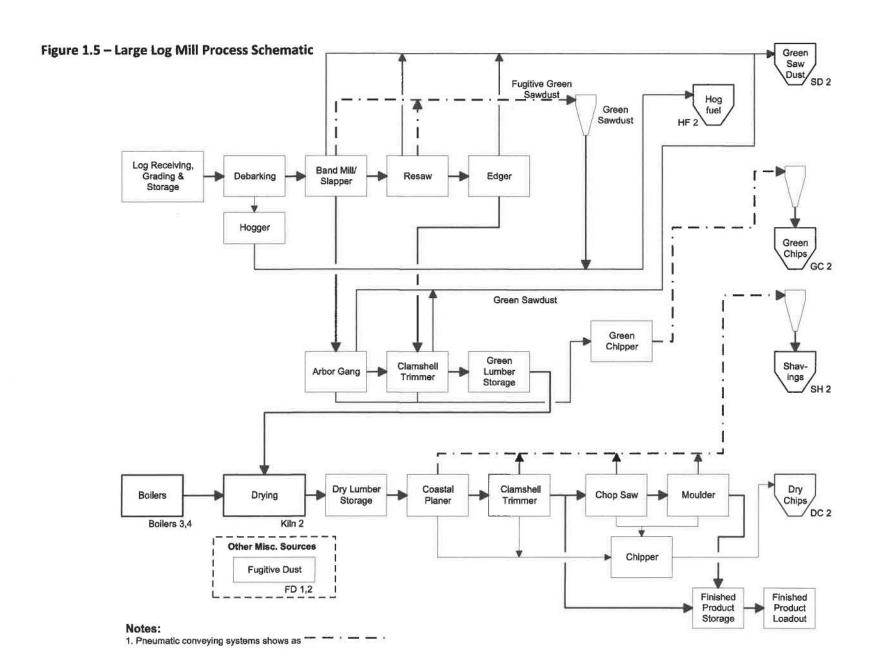

Small Log Mill

Figure 1.1 – Location and Layout of Large and Small Log Mills.

Figure 1.2 – Small Log Mill Emission Source Locations



Notes:

1. Pneumatic conveying systems shows as

2.0 Applicable Regulatory Requirements

2.1 Applicable Requirements

The list below is a summary of "applicable requirements," as defined in 40 CFR 71.2, for YFP. Descriptions of specific applicable requirements are provided on EPA I-COMP forms in Attachment 1.

FARR (40 CFR Part 49)

Certain requirements in the Federal Air Rules for Reservations (FARR) in 40 CFR Part 49, Subpart C apply to Yakama Forest Products.

Among the main limits, FARR requires that the LPG fuel combusted be less than 400 ppmw sulfur and that the particulate concentration from the boilers, and all other particulate sources, not exceed 0.1 grain per dry standard cubic foot. All sources must have opacity of less than 20%. As noted in the introduction, the boilers are fueled exclusively with LPG meeting the ASTM HD 5 specification. The ASTM D 1835 HD 5 LPG fuel specification is a maximum of 123 ppmw (0.0123%) total sulfur.

In addition, there is a sulfur dioxide concentration standard of 500 ppmv. The use of LPG as boiler fuel provides for operating conditions far below (fuel is 123 ppmw and stack gas is estimated at 5 ppmv) these limits.

Under the FARR, Yakama Forest Products must file annual registration forms and complete a fugitive particulate emissions matter survey.

Boiler NSPS (40 CFR Part 60 Subpart Dc)

The boilers are subject to the fuel quality requirements of 40 CFR Part 60 Subpart Dc. The fuel must have a sulfur concentration of less than 0.5%. The ASTM D 1835 HD 5 specification requires a maximum of 123 ppmw (0.0123%) total sulfur.

Plywood and Composite Wood Products MACT (40 CFR Part 63 Subpart DDDD)

The subpart imposes no substantive requirements for sawmills – it requires only submission of an initial notification under 40 CFR 63.9(b)(2). YFP submitted its initial notification in December 2009. If in the future YFP demonstrates lower HAP PTE based on testing or more realistic, acceptable sawmill emission factors, or if EPA changes its "once in, always in" policy, YFP would expect to seek to revise the applicability status for Subpart DDDD.

Boiler NESHAP (40 CFR Part 63 Subpart DDDDD)

The Boiler NESHAP requires a one-time energy assessment and generally, annual boiler tuneups. The energy assessment has been completed. The annual tune-ups are not required because the boiler combustion is controlled by an oxygen sensor. 40 CFR 63.7540(12) allows the tune-up frequency to be extended to five year intervals if an oxygen trim system is used to control the boiler burner.

Federal Operating Permit Program - 40 CFR Part 71

YFP is subject to Part 71 because EPA considers it to be a major source for HAP emissions, and because it has the potential to emit over 100 tons per year of a criteria pollutant. Table 2.1 presents actual 2019 emissions and current potential to emit (PTE).

Table 2.1 - Calendar Year 2019 Actual Emissions and Current Potential to Emit.

Pollutants (tpy)										
Emissions Source	SOx	NOx	CO	VOC	TP	PM10	PM25	HAP	Methanol	Data Source/Comments
Actual Emissions (Calendar Ye	ar 2019	1		- 1			- 1		()	
Boiler	0.8	16.5	9.5	1.3	0.9	0.9	0.9	0.0	ANT:	AP-42 Section 1.5 (HD-5 LPG)
Kiin				49.7	1.1	1.1		3.3	2.0	
Mill	255 7516		-	10.4	12.1	10.3	6.0	0.39	0.39	2
Misc. Non-fugitive Activities				30	6.8	3.4	1.70	-	()	
Misc. Fugitive Activities	207 1700	111111111111111111111111111111111111111		1	7.1	3.5	1.76			
Fugitive Dust	1000		1		20.0	20.0	9 1/19	-06.000		• 1. 0000 2.0000 0.0000 0.000
Total	0.8	16.5	9.5	61.4	48.0	39.2	10.4	3.7	2.4	The state of the s
	and the same			4			Service Service			
Total Point Source	0.8	16.5	9.5	61.4	20.9	15.7	8.6	3.7	2.4	N. Andrews
									8	
				7	1375	- 3				
Total Site Potential to emit in to	ns per	calend	ler yea	r	event . Dis	Library Pri	O MEN	moveme		
Boiler	3.6	72.1	41.6	5.5	3.9	3.9	3.9	0.0		AP-42 Section 1.5 (HD-5 LPG)
Kiln			10 13	198.2	5.1	5.1		50.9	43.1	Western White Pine (<200 oF) VOC
Mill	with it			16.37	19.1	16.2	9.50	0.61	0.61	
Misc. Non-fugitive Activities	N. 855	56+(H=1)	1		26.1	13.1	6.53			(m)
			- 1	B1 5000	*65059					A CONTRACT OF SALES AND SALES AND ADDRESS
Total Point Source	3.6	72.1	41.6	220,1	54,3	38.3	19,9	51.5	43.7	
			31				- 1			
Notes:				0.4 (1)						
1. Boldface values are point source	38.	117.00000		1				U = 0.00		f

2.2 Non-Applicable Requirements

Regulations not listed on I-COMP forms are considered to be not currently applicable, but several non-applicable requirements are discussed specifically below to detail the basis for current non-applicability.

Chemical Accident Prevention Program (40 CFR Part 68)

The Chemical Accident Prevention Program requirements apply to an owner or operator of a stationary source that has more than a threshold quantity of a regulated substance in a process. YFP has reviewed the lists of regulated substances and corresponding threshold quantities in 40 CFR Part 68 and has confirmed that it does not have or use at any time amounts of any listed substance over the listed threshold quantities. The only listed substance YFP uses in quantity is acetylene. YFP keeps no more than 7,000 to 8,000 pounds of acetylene in Standard Bottles spread out over the site – well below the 10,000 pound applicability threshold for acetylene.

Compliance Assurance Monitoring (40 CFR 64.2)

CAM requirements apply to units that are subject to an emission limitation, use a control device to achieve compliance with the emission limitation, and have potential pre-control emissions over a certain amount. None of the emission units at YFP use a control device to achieve compliance with applicable emission limits. CAM requirements, therefore, do not apply.

Tank NSPS (40 CFR Part 60 Subpart Kb)

Table 2.2 provides a summary of the fuel storage tanks on site with a nominal capacity of 10,000 gallon (38 m3) or more. Based on the information on Table 2.2, Subpart Kb is not applicable for these tanks, as they are either:

- smaller than 75m³
- are between 75 and 151m³ in size and have a vapor pressure less than 15 kPa, or
- are pressure vessels designed for more than 204.9 kPa.

Table 2.2 - Summary of Fuel Tanks 38m3 or Larger

	Nominal Capacity	Tani	•				
		Length/ Height	Dia.	Vol	ume	Vapor Pressure	1
Tank Name	(gallons)	(ft)	(ft)	(ft3)	(m3)	(kPa)	Comments
Small Log Mill						1	
Diesel 1	12,000	32.08	8	1,613	45.7	0.15	
Large Log Mill	THE PROPERTY CHARLES	and the second section of the second	i	Services with states of a			1
Boiler Fuel 3 (LPG)	30,000	55	10	4,320	122.3	> 100	Pressure Vesse
Boiler Fuel 4 (LPG)	30,000	55	10	4,320	122.3	> 100	Pressure Vesse
Diesel 2	10,000	20.67	10	1,623	46.0	0.15	2

3.0 Insignificant Sources

Each sawmill has a small pneumatic conveying system that discharges saw filings into a 55 gallon drum. These are considered insignificant sources due to the low air flow rate and the high density (metal filings) particulate. These systems have no visible emissions.

The are no stationary emergency equipment on site that generate air emissions.

Table 3.1 lists and inventory of all fuel storage tanks on site except boiler fuel storage. Boiler fuel storage tank data is provided in Table 2.2. All of these are considered insignificant sources (less than 2 tpy RAP and less than 1,000 pounds per year HAP).

Table 3.1 – Inventory of All Fuel Tanks on Site (Except boiler fuel storage).

Tank Name	Nominal Capacity (gallons)
Small Log Mill	
Truck diesel	12,000
Log yard diesel	5,000
Fork lift diesel	1,000
Gas	500
Kerosene	200
Heating Oil	1,000
Large Log Mill	
Log yard diesel	10,000
Log yard diesel	6,000

4.0 Emissions Calculations

This section describes the methodology used to calculate emissions from each source. Site wide emissions are provided in EPA for EMISS in Attachment 1. Detailed emissions spreadsheets are

in Attachment 2 of this application. They are presented in the same form as they would be for the annual fee calculation requirement.

Boilers

The boiler emissions calculations are based on the amount of fuel that each boiler uses per year. The boilers are fueled exclusively with liquified petroleum gas (LPG) meeting the ASTM D 1835 Special Duty (HD 5) specification. Fuel is only metered as to which mill it goes to, not which boiler is goes to, so the boilers at each mill are assumed to use a prorated amount of fuel based on operational hours. The sulfur emissions are based on the HD 5 specification of 123 ppmw maximum.

All emission factors used for the boilers are AP-42 for the HD 5 fuel specification. They are shown on the detail calculation sheets in Attachment 2.

Boiler potential to emit in Table 7b, Attachment 2, is based on continuous operation (8,760 hours per year) The same emission factors are used as for actual emissions.

Kilns

This application uses the kiln emission factors that were provided by USEPA Region 10 from Oregon State University. YFP is concerned about the data quality of the OSU factors, but has used them for this calculation at EPA's request. The concerns about these factors include:

- 1. The major emitting species at YFP (Grand Fir) was not tested, White Fir data was used.
- 2. The testing was at a laboratory scale.
- The emitting compounds found are known to be very difficult to analyze due to known interferences.

The kiln potential to emit calculation is complicated because there are three wood species, pine, grand fir, and douglas fir, each with their own emission factor and production rate. The mill has a permit limitation to never dry pine over 200 °F. The maximum production rate to calculate PTE for the kilns, and the subsequent by-product production, were calculated based on process models. A summary of the modeling results are provided in Attachment 3.

Wood By-Product Handling and Storage

The kiln is the rate limiting step for the saw mill. The kiln is designed to operate continuously, 24/7 with the exception of a two week shutdown that normally occurs in late December. The saw mill operates between 40 and 80 hours per week to support the kiln. The length of time the sawmill operates is a function of species. Fir can be dried faster than pine, so heavy fir production requires the sawing/planning operations to operate longer than heavy pine production. There is no market for un-dried lumber and lumber must be dried very soon after the initial cutting. Therefore, all production must pass expediently through the kiln.

Each mill handles wood by-products for resale. These products are hog fuel, sawdust, green chips, dry chips, and shavings. For the actual emissions calculations, the quantities of by-products are taken from calendar year 2019 production records (bone dry tons of by-product per thousands of board feet production).

The emission factors for planing and material handling are from the current Part 71 permit. The maximum by-product production calculation used in the emissions assessment is based on the maximum mill production. The maximum capacity is not based on the material handling equipment capacity.

A portion of the sawdust and all green chips are pneumatically conveyed at the Large Log Mill from the source to the load out bins. Shavings are pneumatically conveyed at both mills. Emissions were calculated for planing, pneumatic conveying, bin loading, and truck loading.

Fugitive Dust

The fugitive dust calculations (Attachment 2) are from AP-42 and are based on the yard equipment metrics and watering patterns. They are likely a significant overestimate, but no better data has been located yet. A detailed yard study calculated emissions based on a production level of 135,988 mbf/yr. Emissions were then linearly scaled on this number based on actual or PTE production values.

4.0 Annual Fees

YFP has submitted annual fee forms and paid fees to EPA since 2003. For Calendar year 2019 a total of \$6,349.58 was paid.

5.0 Compliance History

The Small Log Mill started operating in August 1998; the Large Log Mill started operating in June 2002. Since 2000, YFP and the Tribe have had periodic permitting and compliance discussions with EPA Region 10. The main areas of discussion have been requirements of NSPS Subpart Dc and Title V/Part 71 permitting.

In August 2000, EPA issued a letter to YFP regarding NSPS requirements for the Small Log Mill boiler. The issue was discussed at a September 7, 2001 meeting between YFP and EPA. In July 2003, YFP submitted to EPA a Title V permit application for the Large Log Mill and fees of \$13,478. YFP has paid fees to EPA for each year since. On September 18, 2003 the agency determined that the application was incomplete. On October 6, 2003, EPA issued a notice of noncompliance to YFP, listing violations of Title V Part 71 requirements and provisions in NSPS Subpart Dc and Subpart A. YFP responded on November 26, 2003, seeking waiver of NSPS initial source test requirements, providing fuel records, providing construction/start-up dates, and proposing an alternative approach to recording amounts of fuel combusted. YFP provided a second response on January 1, 2004, addressing the Part 71 allegations and requesting alternate forms of compliance determination for certain NSPS requirements. On January 27, 2004, EPA issued a follow-up letter agreeing to meet with YFP to discuss the issues.

A meeting between YFP and EPA was held on February 6, 2004. At the meeting, a former YFP Business Manager became concerned that YFP did not have proper authority from the Tribal Council to make commitments to the federal government because there had not yet been any government-to-government consultation about EPA authority or jurisdiction on the Yakama Reservation. He therefore asked that the meeting cease until YFP could get formal authority from the Tribal Council.

On June 2, 2004, the Yakama Nation Tribal Council requested a government-to-government consultation with EPA regarding implementation of the federal Clean Air Act Title V air operating permit program. EPA Region 10 responded on July 15, 2004 offering to meet. At some point during this time, however, the Tribal Council voted to constrain YFP's ability to work with EPA on the outstanding issues. An April 8, 2005 letter from EPA to the Tribal Council Chairman asked the Council to authorize YFP to work with EPA to address the cited violations. After a meeting between EPA and representatives from YFP and the Tribe in Toppenish on May 4, 2005, EPA issued a May 31, 2005 letter outlining a plan for compliance with Title V and NSPS requirements.

In June (and an October supplement) 2006, YFP submitted an alternative monitoring request to EPA seeking approval to rely on fuel supplier certifications and other procedures to monitor compliance with the fuel sulfur content limit for the two Large Log Mill boilers, in place of NSPS Subpart Dc on-site sampling and analysis requirements. EPA responded in a March 5, 2007 letter identifying additional information YFP would provide to support the request. A September 2007 letter from EPA to YFP follows up on an EPA air inspection of the plant. The letter notes that EPA is prepared to continue to work cooperatively with YFP and the Yakama Nation to achieve compliance and seeks agreement on a compliance strategy and timeline; the letter provides a List of Compliance Issues of Concern.

In a meeting on November 13, 2007, YFP discussed with EPA derating the Large Log Mill boilers (Boilers 3 & 4) to below 30 MMBtu/hr. Boilers rated at 30 MMBtu/hr are subject to the Subpart Dc fuel sampling and opacity monitoring requirements. YFP undertook to derate the boilers to below this threshold so that these provisions would no longer apply. In an April 10, 2008 letter to EPA, YFP stated that it was going forward with the derate. YFP purchased new burners for the boilers, then conducted testing in February 2009 to demonstrate that the boilers were derated to below 30 MMBtu/hr (the boilers were rated at 29.1 MMBtu/hr) and submitted the results to EPA. In a June 29, 2009 letter to YFP, EPA confirmed its determination that the boilers were successfully derated such that the maximum heat input capacity of each boiler is now less than 30 million Btu per hour. As noted above in the Introduction, these requirements no longer apply because YFP no longer has the capacity to fire fuel oil in the LLM boilers.

As a result of the derate, Boilers 3 and 4 are no longer subject to the Subpart Dc fuel sampling and opacity monitoring requirements. During time that Boilers 3 & 4 were rated over 30 MMBtu/hr, however, YFP did not meet the requirements in 40 CFR 60.44c(g) & 60.46c(d)(2) to sample fuel tank oil after each new shipment was received, although it did seek approval of alternative monitoring based on fuel supplier certifications. Similarly, during the time Boilers 3 & 4 were rated over 30 MMBtu/hr, the plant did not meet the requirement in 40 CFR 60.47c(a) and 60.43c(c) to install and operate a COMS to monitor compliance with 20% opacity limit. Finally, during this time the plant also did not meet the requirement in 40 CFR 60.48c(g)(1) to record and maintain records of amounts of fuel combusted each day. As noted, these requirements no longer apply.

In addition, YFP did not meet the deadlines for the requirement in 40 CFR 60.8(a) to conduct an initial performance test within 180 days after initial startup and report the results, nor did it notify EPA of date of construction, anticipated startup and actual startup (40 CFR 60.48c(a) & 60.7) in a timely fashion. To address the initial performance test requirements, YFP provided fuel supplier certifications to EPA in a December 16, 2009 submission. The certifications show that the fuel oil initially fired in the boilers contained less than 0.5 weight percent sulfur. YFP

provided Method 9 observation results to EPA in February 2009. With regard to dates of construction and startup, as of May 31, 2005, EPA confirmed that, though untimely, it had the necessary information.

As noted in Section 2.1 above, the Plywood and Composite Wood Products MACT (40 CFR Part 63 Subpart DDDD) imposes no substantive requirements for YFP, but it does require submission of an initial notification under 40 CFR 63.9(b). YFP provided the required initial notification information to EPA in December 2009, after the deadline.

In April 2009 the Tribal Government authorized YFP to seek a Title V/Part 71 air operating permit from EPA, resulting in a permit application.

The mill was issued a Title V/Part 71 permit on September 29, 2015. The mill has been in compliance since then. This permit renewal application will be submitted after the March 29, 2020 deadline.

6.0 Requested Permit Revisions

The following are the requested changes to the existing permit:

Permit

Page 4 of 31 – In the Emission Unit Description for the LLM Boilers, change the heat input capacity to 33 MMBtu/hr and the approximate maximum steam production to 26,800 lbs/hr. The large log mill boilers are nameplate rated for a maximum heat input of 33 MMBtu/hr with a calculated coincident steam flow of 26,400 lbs/hr.

Page 24 and 25 of 31 - YFP requests that EPA revise NESHAP boiler tune-up frequency in permit subsection 5.4.1 (on page 25 of 31, in Section 5, Unit-Specific Requirements – Boilers #1-4, subsection 5.4 on NESHAP Subpart DDDDD Tune-Ups). YFP uses continuous oxygen trim systems on each boiler to maintain optimum air to fuel ratios. As currently written, subsection 5.4.1 requires annual tune-ups, citing 40 CFR §63.7515(d) and Item 3 in Table 3 to Subpart DDDDD. The former refers to conducting "an annual, biennial, or 5-year performance tune-up according to § 63.7540(a)(10), (11), or (12), respectively," while the latter applies to boilers without an oxygen trim system. For boilers with oxygen monitoring, § 63.7540(a)(12) applies. It states that if a boiler has a continuous oxygen trim system that maintains an optimum air to fuel ratio, the tune-up must be conducted every five years as specified in paragraphs (a)(10)(i) through (vi) of the section, provided the oxygen level is set no lower than the oxygen concentration measured during the most recent tune-up. 40 CFR 63.7540(a)(12). The applicable item in Table 3, therefore, is Item 1, for boilers with an oxygen trim system. While YFP will likely continue to conduct annual tune-ups to ensure boiler efficiency, the permit should be accurate in requiring the five year frequency rather than annual.

Statement of Basis

Page 4 of 28 – Same change as requested above for the Emission Unit Description for the LLM Boilers (permit page 4 of 31).

Page 5 of 28 – Revise the last full paragraph as follows. In the second sentence, delete the phrase "their current capacities" and replace with "prior to 2014." In the fourth sentence, add the following phrase after the phrase "were converted to burn propane in 2014": ", obviating the need for the derate, which was performed solely to reduce used motor oil fuel regulatory requirements."

Page 7 of 28 - The emissions estimates discussion should be revised to reflect that the LLM boilers are nameplate rated for a maximum heat input of 33 MMBtu/hr with a coincident steam flow of 26,400 lbs/hr and that YFP uses LPG meeting the ASTM D 1835 HD-5 specification. This specification calls for a maximum sulfur content of 123 ppmw, which translates to a gas concentration of 10 grains per 100 ft3 of gas.

Page 24 of 28 – In the paragraph on "Permit Conditions 4.21 through 4.26," delete the phrase "only burn propane and have capacities between 10 and 30 MMBtu/hr." The NESHAP General Provisions apply because EPA has determined that the boilers are subject to Subpart DDDDD, period.

The example calculation for sulfur dioxide should be revised to reflect the boiler rating of 33 MMBtu/hr and that YFP exclusively fuels the boilers with LPG meeting the ASTM D 1835 HD-5 specification. This specification calls for a maximum sulfur content of 123 ppmw., which translates to a gas concentration of 10 grains per 100 ft3 of gas.

Page 25 of 28 – The example calculation for PM should be revised to reflect the boiler rating of 33 MMBtu/hr.

The entry for "Permit Condition 5.4" should be revised to state that the tune-up is required once every five years because the YFP boilers are equipped with oxygen trim systems.

Appendix A

Page A-4 of A-14 - The calculations should reflect the boiler rating of 33 MMBtu/hr. Note that YFP exclusively fuels the boilers with LPG meeting the ASTM D 1835 HD-5 specification. This specification calls for a maximum sulfur content of 123 ppmw. This translates to a gas concentration of 10 grains per 100 ft3 of gas.

Page A-5 of A-14 – Note that Ponderosa dominates the pine species cut in the past a will likely dominate the pine species cut for the future. There currently is no feasible scenario where Western White Pine would be the dominate species cut.

Attachment 1 EPA Forms

Federal Operating Permit Program (40 CFR Part 71) GENERAL INFORMATION AND SUMMARY (GIS)

A. Mailing Address and Contact Information
Facility name
Mailing address: Street or P.O. Box PO Box 489
City White Swan State WA ZIP 98952
Contact person: Mr. Steve Rigdon Title General Manager
Telephone (_509) _8742901 Ext101
Facsimile (509)8748884
B. Facility Location
Temporary source?Yes X_No Plant site location251 Medicine Valley Road
X
City White Swan State WA County Yakima EPA Region X
Is the facility located within:
Indian lands? X YES NO An offshore source in federal waters? YES X NO
Non-attainment area?YES _X_NO If yes, for what air pollutants?
Within 50 miles of affected State? X YESNO If yes, What State(s)? Oregon
C. Owner
Name Yakama Indian Nation Street/P.O. Box PO Box 151
City Toppenish State WA ZIP 98948 -
Telephone (_509_) _8655121
D. Operator
Name(Same as above) Street/P.O. Box
City State ZIP
Telephone () Ext

E. Application Type
Mark only one permit application type and answer the supplementary question appropriate for the type marked.
Initial Permit X Renewal Significant Mod Minor Permit Mod(MPM)
Group Processing, MPM Administrative Amendment
For initial permits, when did operations commence?//
For permit renewal, what is the expiration date of current permit? 9 / 19 / 2020
F. Applicable Requirement Summary
Mark the types of applicable requirements that apply:
SIPFIP/TIPPSDNon-attainment NSR
Minor source NSRX Section 111 Phase I acid rain Phase II acid rain
Stratospheric ozone OCS regulations X NESHAP X Sec. 112(d) MACT
Sec. 112(g) MACT Early reduction of HAP Sec 112(j) MACT RMP [Sec.112(r)]
Section 129 NAAQS, increments or visibility but for temporary sources (This is rare)
Is the source subject to the Deepwater Port Act?YES \underline{X} NO
Has a risk management plan been registered?YES _X_NO Agency
Phase II acid rain application submitted?YES _X_NO If YES, Permitting Authority
G. Source-Wide PTE Restrictions and Generic Applicable Requirements Cite and describe any emissions-limiting requirements and/or facility-wide "generic" applicable requirements. Federal Operating Permit Program - 40 CFR Part 71
FARR -Total Particulate in Stacks, Visible Emissions, Sulfur, Open Burning, Fugitive Particulate - 40 CFR Part 49
NSPS for Boilers - Sulfur in Fuel, Work Practice, Record Keeping - 40 CFR Part 60 Subpart Do
Boiler NESHAP Subpart DDDDD
Plywood and Composite Wood Products MACT - 40 CFR Part 63 Subpart DDDD

GIS

H. Process Description

List processes, products, and SIC codes for the facility.

Process	Products	SIC	
Sawmill	Lumber, wood by-products	2421	

3

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID	Description of Unit
Boilers 1, 2	Small log boilers
Boilers 3, 4	Large log Boilers
Kiln 1, 2	Small log and large log kiln respectively
HF 1, 2	Small log and large log hog fuel handling respectively
SD 1, 2	Small log and large log sawdust handling respectively
GC 1, 2	Small log and large log green chip handling respectively
DC 1, 2	Small log and large log dry chip handling respectively
SH 1, 2	Small log and large log shavings handling respectively
FD 1, 2	Fugitive dust emissions from unpaved and paved roads respectively

J. Facility Emissions Summary

Enter potential to emit (PTE) for the facility as a whole for each regulated air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants, stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

DM 10 38.3			ead <u>0</u> tons/yr
0.000		toris/yr	tons/yr
Total HAP 51.5			
Single HAP with gr	eatest amountMe	ethanol	PTE <u>43.7</u> tons/yr
Total of regulated p	pollutants (for fee cal	culation), Sec. F, line 5	of form FEE 118 tons/yr
isting Federally-E	nforceable Permits		
Dormit number(s)	R10T5120000	Bormit tuno Part 7	Permitting authority USE
Permit number(s)		Permit type	Permitting authority
mission Unit(s) Co	vered by General P	'ermits	
Emissian unit(a) o	bioet to governly now	mit.	
	bject to general pen	THE	
Lillission driids) sc	Application made	Coverage gran	ted
	Application made		
Check one:			Expiration Date//
Check one:			Expiration Date//
Check one:	ntifier		Expiration Date//

INSTRUCTIONS FOLLOW

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information
Emissions unit ID Boiler 1 Description Small Log Mill Process Boiler SIC Code (4-digit) NA SCC Code 10201302
B. Emissions Unit Description
Primary use <u>Steam generation to operate dry kilns</u> Temporary Source <u>Yes X No</u> Manufacturer <u>Superior Boiler</u> Model No. <u>6-5-3000</u> Serial Number <u>13796</u> Installation Date <u>8 / 1 / 1998</u>
Boiler Type: X Industrial boiler Process burner Electric utility boiler Other (describe)
Boiler horsepower rating 800 Boiler steam flow (lb/hr) 20,700
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bedPulverized, dry bed
Actual Heat InputMM BTU/hr Max. Design Heat InputMM BTU/hr

Primary fuel type(s) LPG (HD-5)		fuel type(s)		
Describe each fuel you expected to	Max. Sulfur Content (%)	Max. Ash Content (%)	(c	BTU Value f, gal., or lb.)
LPG (ASTM D 1835 HD-5)	0.0123%	0%	21,58	80 Btu/lb
D. Fuel Usage Rates				
Fuel Type	Annual Actua Usage	hl Hourl		ım Usage Annual
LPG (ASTM D 1835 HD-5)	Not operated last year	1,155	lbs/hr	Not operated last year
E. Associated Air Pollution Control	Equipment			
Emissions unit ID None	Device type	ufacturer		
Air pollutant(s) Controlled Model No				
Installation date// Efficiency estimation method	Control effic	ciency (%)		_
F. Ambient Impact Assessment his information must be completed by pplicable requirement for this emission			nt impact	assessment is ar
Stack height (ft)	Inside stack dia	meter (ft)		

Stack temp (°F) ______ Design stack flow rate (ACFM) ______

Velocity (ft/sec) ___

Actual stack flow rate (ACFM)

EUD-1

3

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information
Emissions unit ID Boiler 2 Description Small Log Mill Process Boiler SIC Code (4-digit) NA SCC Code 10201302
B. Emissions Unit Description
Primary use <u>Steam generation to operate dry kilns</u> Temporary Source <u>Yes X</u> No Manufacturer <u>Superior Boiler</u> Model No. <u>7-4-2500</u> Serial Number <u>14159</u> Installation Date <u>8 / 1 / 1998</u> Boiler Type: <u>X</u> Industrial boiler <u>Process burner</u> <u>Electric utility boiler</u>
Other (describe)
Boiler horsepower rating 800 Boiler steam flow (lb/hr) 21,562
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat InputMM BTU/hr Max. Design Heat InputMM BTU/hr

Primary fuel type(s) LPG (HD-5)		fuel type(s)		
Describe each fuel you expected to				
Fuel Type Max. Sulfur Max. Ash BTU Value Content Content (cf, gal., or left)				
LPG (ASTM D 1835 HD-5)	0.0123%	0%	21,5	80 Btu/lb
). Fuel Usage Rates				
Fuel Type	Annual Actua Usage	al Hour		ım Usage Annual
LPG (ASTM D 1835 HD-5)	Not operated last year	1,155	lbs/hr	Not operated last year
. Associated Air Pollution Control	Equipment			
Emissions unit ID <i>None</i>	Device type			
Air pollutant(s) Controlled	Man	ufacturer		
Model No	Serial No			_
Installation date//	Control effic	ciency (%)		_
Efficiency estimation method				
. Ambient Impact Assessment	Not Applicable			
nis information must be completed by plicable requirement for this emission			nt impact	assessment is a
Stack height (ft)	Inside stack dia	meter (ft)		·
Stack temp (°F)	Design stack fl	ow rate (ACFN	1)	

Velocity (ft/sec)

Actual stack flow rate (ACFM)_

EUD-1

3

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

Emissions unit IDBoilers 3, 4 DescriptionLarge Log Mill Process Boiler SIC Code (4-digit)NA SCC Code10201302 B. Emissions Unit Description Primary useSteam generation to operate dry kilns Temporary Source YesX No Manufacturer Superior Boiler Model No6-5-5000 Serial Number #3 14159 / #4 14922 Installation Date4 /1 /2001 Boiler Type:X Industrial boiler Process burner Electric utility boiler Other (describe)
Primary use Steam generation to operate dry kilns Temporary Source Yes X No Manufacturer Superior Boiler Model No. 6-5-5000 Serial Number #3 14159 / #4 14922 Installation Date 4 / 1 / 2001 Boiler Type: X Industrial boiler Process burner Electric utility boiler Other (describe)
Manufacturer Superior Boiler Model No. 6-5-5000 Serial Number #3 14159 / #4 14922 Installation Date 4 / 1 / 2001 Boiler Type: X Industrial boiler Process burner Electric utility boiler Other (describe)
Other (describe)
Boiler horsepower rating 1000 Boiler steam flow (lb/hr) 26,400 (estimated)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat InputMM BTU/hr Max. Design Heat Input33MM BTU/hr

100		
L-110	Data	

Primary fuel type(s) LPG (HD-5) Standby fuel type(s)	nary fuel type(s)	LPG (HD-5)	Standby fuel type(s)
--	-------------------	------------	----------------------

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
LPG (ASTM D 1835 HD-5)	0.0123%	0%	21,580 Btu/lb

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage		
		Hourly	Annual	
LPG (ASTM D 1835 HD-5)	1,272,000 gal/yr	361 gal/hr	3,159,000 gal/yr	

Emissions unit ID_	None		Device type	
Air pollutant(s) Co	ntrolled_		Manufacturer	
Model No			Serial No	
Installation date	1	1	Control efficiency (%)	

F. Ambient Impact Assessment Not Applicable

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp (°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

3

Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

	251						
A. General Informatio	n						
Emissions unit ID Kiln 1, 2 Description Lumber Drying Kiln SIC Code (4-digit) SCC Code							
B. Emissions Unit I	Description						
Primary use or eq	uipment typeSteam Operated Dryin						
Manufacturer COE Model No. Unknown Serial No. Unknown Installation date #2 April 2001							
	Raw materials Green Wood						
Finished products							
Temporary source: X No Yes							
C. Activity or Produ	iction Rates						
Activity or Amount/Hour Amount/Year Production Rate							
Actual Rate See attached calculations See attached calculations							
Maximum rate	See attached calculations	See attached calculations					
D. Associated Air Pollution Control Equipment							
1920 0 0 0 0 0 0 0 0 0	No air pollution control						
Emissions unit ID	Emissions unit ID Device Type						
Manufacturer	Model No_						
Serial No	Insta	allation date//					
Control efficiency	(%) Capture efficien	ncy (%)					
Air pollutant(s) controlled Efficiency estimation method							

E. Ambient Impact Assessment

Not Applicable

	d by temporary sources or when ambient impact rement for this emissions unit (This is not common)).
Stack height (ft)	nside stack diameter (ft)
Stack temp (F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

INSTRUCTIONS FOR EUD-3 EMISSIONS UNIT DESCRIPTION FOR PROCESS SOURCES

This form is designed to describe emissions units for processes for which forms EUD-1 or EUD-2 are not appropriate. For example, sources such as rock crushers and asphalt batch plants. This form will help you to collect and organize technical information, including operational characteristics, applicable requirements, compliance terms, and emissions for each emissions unit.

- **Section A** The emissions unit ID should be consistent with the one used in section I of form **GIS**. Enter the four-digit SIC code for the unit, which may be different form that used for the facility as a whole. In addition, complete the Source Classification Code (SCC), if known or available, but this is not mandatory.
- **Section B** There may be other information that the permitting authority will need to know that is not specifically requested on the forms and that should be included on attachments. Such information would include information needed to adequately identify the emissions unit and to determine its applicable requirements.
- **Section C** The amount of raw materials that are processed and/or the number of activities performed are values that are typically multiplied by emissions factors to calculate PTE and actual emissions.
- **Section D** Identify and describe any associated air pollution control device. Attach copies of correspondence from the vendor documenting these values, if available, or indicate how these values were otherwise determined (e.g., AP-42).
- **Section E** Complete this section only if ambient impact assessment is an applicable requirement or the facility is a temporary source. This is not common.

A. General Information

Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

Emissions unit ID	SH 1 Cyclone 1 Description Si	havings l	Handling System	
SIC Code (4-digit) SCC Code			
B. Emissions Unit [Description			
Primary use or eq	uipment type	onveying	System for Shavings Handling	
	merican Sheet Metal Works		NoUnknown	
Serial No	nknown	Installa	ition date	
Raw materials _S	havings			
Finished products	Shavings			
Temporary source	e: <u>X</u> NoYes			
C. Activity or Produ	iction Rates			
Activity or Production Rate	Amount/Hour		Amount/Year	
Actual Rate	See attached calculations See attached calculations			
Maximum rate	See attached calculations		See attached calculations	
D. Associated Air P	Pollution Control Equipment			
	SH 1 Cyclone 1 Device Typ		ne	
Manufacturer An	nerican Sheet Metal Works _M	odel No_		
Serial No		_ Insta	llation date	
Control efficiency	(%) Captul	re efficier	ncy (%) 99.975% (Dry material basis)	
Air pollutant(s) co	introlled PM E	fficiency	estimation method Oregon DEQ EF	

EUD-3

F Ambient Impact Assessment

Not Applicable

	by temporary sources or when ambient impact ement for this emissions unit (This is not common)).
Stack height (ft)	Inside stack diameter (ft)
Stack temp (F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

2

INSTRUCTIONS FOR EUD-3 EMISSIONS UNIT DESCRIPTION FOR PROCESS SOURCES

This form is designed to describe emissions units for processes for which forms EUD-1 or EUD-2 are not appropriate. For example, sources such as rock crushers and asphalt batch plants. This form will help you to collect and organize technical information, including operational characteristics, applicable requirements, compliance terms, and emissions for each emissions unit.

- **Section A** The emissions unit ID should be consistent with the one used in section I of form **GIS**. Enter the four-digit SIC code for the unit, which may be different form that used for the facility as a whole. In addition, complete the Source Classification Code (SCC), if known or available, but this is not mandatory.
- **Section B** There may be other information that the permitting authority will need to know that is not specifically requested on the forms and that should be included on attachments. Such information would include information needed to adequately identify the emissions unit and to determine its applicable requirements.
- **Section C** The amount of raw materials that are processed and/or the number of activities performed are values that are typically multiplied by emissions factors to calculate PTE and actual emissions.
- **Section D** Identify and describe any associated air pollution control device. Attach copies of correspondence from the vendor documenting these values, if available, or indicate how these values were otherwise determined (e.g., AP-42).
- **Section E** Complete this section only if ambient impact assessment is an applicable requirement or the facility is a temporary source. This is not common.

SD 2

A. General Information

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

Emissions unit ID	Cyclone 2 Description	Green Saw Dust Handling System
SIC Code (4-digit)	SCC Code	
B. Emissions Unit D	Description	
Primary use or eq	uipment type	Conveying System for Green Sawdust Handling
Manufacturer _Ra	odrigue Metal	Model No
Serial No	nknown	Installation date
Raw materials _G		
	Green Sawdust	
	e: <u>X</u> NoYes	
C. Activity or Produ	ction Rates	
Activity or Production Rate	Amount/Hour	Amount/Year
Actual Rate	See attached calculation	ns See attached calculations
Maximum rate	See attached calculation	ns See attached calculations
D. Associated Air P	ollution Control Equipme	ent
Emissions unit ID	SD 2 Cyclone 2 Device T	ype_Multi-Clone
Manufacturer Roo	drigue Metal	Model No
Serial No		Installation date
Control efficiency	(%)Cap	ture efficiency (%) 99.975% (Dry material basis)
Air pollutant(s) co	ntrolled PM	Efficiency estimation method Oregon DEQ EF

E. Ambient Impact Assessment

Not Applicable

	d by temporary sources or when ambient impact ement for this emissions unit (This is not common))
Stack height (ft)	
Stack temp (F)	
Actual stack flow rate (ACFM)	Velocity (ft/sec)

INSTRUCTIONS FOR EUD-3 EMISSIONS UNIT DESCRIPTION FOR PROCESS SOURCES

This form is designed to describe emissions units for processes for which forms EUD-1 or EUD-2 are not appropriate. For example, sources such as rock crushers and asphalt batch plants. This form will help you to collect and organize technical information, including operational characteristics, applicable requirements, compliance terms, and emissions for each emissions unit.

- **Section A** The emissions unit ID should be consistent with the one used in section I of form **GIS**. Enter the four-digit SIC code for the unit, which may be different form that used for the facility as a whole. In addition, complete the Source Classification Code (SCC), if known or available, but this is not mandatory.
- **Section B** There may be other information that the permitting authority will need to know that is not specifically requested on the forms and that should be included on attachments. Such information would include information needed to adequately identify the emissions unit and to determine its applicable requirements.
- **Section C** The amount of raw materials that are processed and/or the number of activities performed are values that are typically multiplied by emissions factors to calculate PTE and actual emissions.
- **Section D** Identify and describe any associated air pollution control device. Attach copies of correspondence from the vendor documenting these values, if available, or indicate how these values were otherwise determined (e.g., AP-42).
- **Section E** Complete this section only if ambient impact assessment is an applicable requirement or the facility is a temporary source. This is not common.

Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

A. General Information		
	GC 2	
Emissions unit ID	Cyclone 3 Description Green Chi	ps Handling System
SIC Code (4-digit)	SCC Code	
B. Emissions Unit D	escription	
Primary use or eq	uipment typePneumatic Conveying	System for Green Chips Handling
ManufacturerPr	ecision Husky Model	No <i>Unknown</i>
Serial No	nknown Installa	ation date
Raw materials _G	reen Chips	
Finished products		
	e: X No Yes	
C. Activity or Produ	ction Rates	
Activity or Production Rate	Amount/Hour	Amount/Year
Actual Rate	See attached calculations	See attached calculations
Maximum rate	See attached calculations	See attached calculations
D. Associated Air P	ollution Control Equipment	
Emissions unit ID	GC 2 Cyclone 3 Device Type Cyclo	ne
Manufacturer Pre	ecision Husky Model No_	
Serial No	Insta	llation date <u>Unknown</u>
Control efficiency	(%) Capture efficier	ncy (%) 99.975% (Dry material basis)
Air pollutant(s) co	ntrolled <u>PM</u> Efficiency	estimation method Oregon DEQ EF

E. Ambient Impact Assessment

Not Applicable

	d by temporary sources or when ambient impact ement for this emissions unit (This is not common))
Stack height (ft)	nside stack diameter (ft)
Stack temp (F)	
Actual stack flow rate (ACFM)	

INSTRUCTIONS FOR EUD-3 EMISSIONS UNIT DESCRIPTION FOR PROCESS SOURCES

This form is designed to describe emissions units for processes for which forms EUD-1 or EUD-2 are not appropriate. For example, sources such as rock crushers and asphalt batch plants. This form will help you to collect and organize technical information, including operational characteristics, applicable requirements, compliance terms, and emissions for each emissions unit.

- **Section A** The emissions unit ID should be consistent with the one used in section I of form **GIS**. Enter the four-digit SIC code for the unit, which may be different form that used for the facility as a whole. In addition, complete the Source Classification Code (SCC), if known or available, but this is not mandatory.
- **Section B -** There may be other information that the permitting authority will need to know that is not specifically requested on the forms and that should be included on attachments. Such information would include information needed to adequately identify the emissions unit and to determine its applicable requirements.
- **Section C** The amount of raw materials that are processed and/or the number of activities performed are values that are typically multiplied by emissions factors to calculate PTE and actual emissions.
- **Section D** Identify and describe any associated air pollution control device. Attach copies of correspondence from the vendor documenting these values, if available, or indicate how these values were otherwise determined (e.g., AP-42).
- **Section E** Complete this section only if ambient impact assessment is an applicable requirement or the facility is a temporary source. This is not common.

Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

A. General Information	n	
Emissions unit ID SIC Code (4-digit)	SH 2 Cyclone 4 Description Shavings SCC Code	Handling System
B. Emissions Unit D	escription	
Primary use or eq	uipment type	g System for Shavings Handling
Manufacturer Ro		
Serial No		ation date
Raw materials _S/		
Finished products		
Temporary source		
C. Activity or Produ	ction Rates	
Activity or Production Rate	Amount/Hour	Amount/Year
Actual Rate	See attached calculations	See attached calculations
Maximum rate	See attached calculations	See attached calculations
D. Associated Air P	ollution Control Equipment	
Emissions unit ID	SH 1 Cyclone 1 Device Type Cycle	one
Manufacturer Roa	drigue Metal Model No	
Serial No	Insta	allation date
Control efficiency	(%) Capture efficie	ncy (%) 99.975% (Dry material basis)
Air pollutant(s) co		estimation method Oregon DEQ EF

E. Ambient Impact Assessment

Not Applicable

	d by temporary sources or when ambient impact ement for this emissions unit (This is not common))
Stack height (ft)	nside stack diameter (ft)
Stack temp (F)	
Actual stack flow rate (ACFM)	Velocity (ft/sec)

INSTRUCTIONS FOR EUD-3 EMISSIONS UNIT DESCRIPTION FOR PROCESS SOURCES

This form is designed to describe emissions units for processes for which forms EUD-1 or EUD-2 are not appropriate. For example, sources such as rock crushers and asphalt batch plants. This form will help you to collect and organize technical information, including operational characteristics, applicable requirements, compliance terms, and emissions for each emissions unit.

- **Section A** The emissions unit ID should be consistent with the one used in section I of form **GIS**. Enter the four-digit SIC code for the unit, which may be different form that used for the facility as a whole. In addition, complete the Source Classification Code (SCC), if known or available, but this is not mandatory.
- **Section B** There may be other information that the permitting authority will need to know that is not specifically requested on the forms and that should be included on attachments. Such information would include information needed to adequately identify the emissions unit and to determine its applicable requirements.
- **Section C** The amount of raw materials that are processed and/or the number of activities performed are values that are typically multiplied by emissions factors to calculate PTE and actual emissions.
- **Section D** Identify and describe any associated air pollution control device. Attach copies of correspondence from the vendor documenting these values, if available, or indicate how these values were otherwise determined (e.g., AP-42).
- **Section E** Complete this section only if ambient impact assessment is an applicable requirement or the facility is a temporary source. This is not common.

Federal Operating Permit Program (40 CFR Part 71) **EMISSION CALCULATIONS (EMISS)**

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID	Site	Wide
----------------------	------	------

B. Identification and Quantification of Emissions

For each emissions unit identified above, list each regulated air pollutant or other pollutant for which the source is major, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. See instructions concerning GHGs. Values should be reported to the nearest tenth (0.1) of a ton for yearly values or tenth (0.1) of a pound for hourly values.

	Emission Rat	es	
Actual	Potential to Emit		
Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
0.8	0.8	3.6	
16.5	16.5	72.1	
9.5	9.5	41.6	
61.4	50.3	220.1	
39.2	8.7	38.3	
3.7	11.8	51.5	
2.4	10.0	43.7	
	Actual Annual Emissions (tons/yr) 0.8 16.5 9.5 61.4 39.2 3.7	Actual Annual Emissions (tons/yr) Hourly (lb/hr) 0.8 0.8 16.5 16.5 9.5 9.5 61.4 50.3 39.2 8.7 3.7 11.8	Annual Emissions (tons/yr) 0.8 0.8 16.5 16.5 72.1 9.5 9.5 41.6 61.4 50.3 220.1 39.2 8.7 38.3 3.7 11.8 51.5

Federal Operating Permit Program (40 CFR Part 71) POTENTIAL TO EMIT (PTE)

For each emissions unit at the facility, list the unit ID and the PTE of each air pollutant listed below and sum the values to determine the total PTE for the facility. It may be helpful to complete form **EMISS** before completing this form. Report each pollutant at each unit to the nearest tenth (0.1) of a ton; values may be reported with greater precision (i.e., more decimal places) if desired. Report facility total PTE for each listed pollutant on this form and in section **J** of form **GIS**. The HAP column is for the PTE of all HAPs for each unit. You may use an attachment to show any pollutants that may be present in major amounts that are not already listed on the form (this is not common).

	Regulated Air Pollutants and Pollutants for wh (PTE in tons/yr)		hich Source is Ma				
Emissions Unit ID	NOx	voc	SO2	PM10	со	Lead	HAP
Site Wide	72.1	220.1	3.6	38.3	41.8	0	51.5
FACILITY TOTALS:							

Federal Operating Permit Program (40 CFR Part 71) INSIGNIFICANT EMISSIONS (IE)

On this page list each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

Number	Description of Activities or Emissions Units	RAP (except HAP)	HAP
2	Saw Sharpening Metal Filings Handling	< 2 tpy	None
7	Oil Storage 12,000 gallons or fewer	< 2 tpy	None
1	Gasoline Fuel Storage 500 gallons	< 2 tpy	< 1,000 lbs/y

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Emission Unit ID(s): Boilers 1, 2, 3, & 4
Applicable Requirement (Describe and Cite) Visible Emissions (VE) limits - 40 CFR 49.124 VE must not exceed 20% opacity, averaged over any consecutive 6-minute period. 49.124(2)(1).
Compliance Methods for the Above (Description and Citation):
The reference test method is EPA Method 9. 40 CFR 49.124(e)(1).
Compliance Status:
X In Compliance: Will you continue to comply up to permit issuance? X YesNo
Not In Compliance: Will you be in compliance at permit issuance?YesNo
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo
Emission Unit ID(s): Boilers 1, 2, 3, & 4
Applicable Requirement (Description and Citation): Sulfur dioxide limits - 40 CFR 49.129 SO2 emissions from combustion source stacks must not exceed an average of 500 ppmv, on a dry basis corrected to 7% O2, during any 3-hour period. 49.129(a)(1).
Compliance Methods for the Above (Description and Citation): All boilers are fueled exclusively with LPG conforming to ASTM D 1835 HD 5 which limits total sulfur content to 123 ppmw. This fuel concentration results in a stack concentration of approximately 5 ppmv of total sulfur.
Compliance Status:
X In Compliance: Will you continue to comply up to permit issuance? X YesNo
Not In Compliance: Will you be in compliance at permit issuance? Yes No

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Emission Unit ID(s): Boilers 1, 2, 3, & 4
Applicable Requirement (Describe and Cite) Particulate Matter (PM) limits - 40 CFR 49.125 PM emissions from combustion source stacks must not exceed an average of 0.1 grains per dscf, corrected to 7% O2, during any 3-hour period. 49.125(d)(1). Compliance Methods for the Above (Description and Citation): The AP-42 emission factor for PM from LPG combustion is 0.7 lbs/1,000 gallons. This will result in an approximate stack concentration of 0.001 grains per DSCF.
Compliance Status:
X In Compliance: Will you continue to comply up to permit issuance? X YesNo
Not In Compliance: Will you be in compliance at permit issuance?YesNo
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo
Emission Unit ID(s): Boilers 1, 2, 3, & 4
Emission Unit ID(s): Boilers 1, 2, 3, & 4 Applicable Requirement (Description and Citation): Rule for limiting sulfur in fuels - 40 CFR 49.130 Limit for gaseous fuels is 400 ppm
Applicable Requirement (Description and Citation): Rule for limiting sulfur in fuels - 40 CFR 49.130
Applicable Requirement (Description and Citation): Rule for limiting sulfur in fuels - 40 CFR 49.130 Limit for gaseous fuels is 400 ppm Compliance Methods for the Above (Description and Citation): All boilers are fueled exclusively with LPG conforming to ASTM D 1835 HD 5 which limits total sulfur
Applicable Requirement (Description and Citation): Rule for limiting sulfur in fuels - 40 CFR 49.130 Limit for gaseous fuels is 400 ppm Compliance Methods for the Above (Description and Citation): All boilers are fueled exclusively with LPG conforming to ASTM D 1835 HD 5 which limits total sulfur content to 123 ppmw.
Applicable Requirement (Description and Citation): Rule for limiting sulfur in fuels - 40 CFR 49.130 Limit for gaseous fuels is 400 ppm Compliance Methods for the Above (Description and Citation): All boilers are fueled exclusively with LPG conforming to ASTM D 1835 HD 5 which limits total sulfur content to 123 ppmw. Compliance Status:

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Emission Unit ID(s): Boilers 1, 2, 3, & 4
Applicable Requirement (Describe and Cite) NSPS Subpart Dc, SO2 standard - 40 CFR Part 60.42.c Shall not combust oil that contains greater than 0.5 weight percent sulfur. 60.42c(d).
Compliance Methods for the Above (Description and Citation): All boilers are fueled exclusively with LPG conforming to ASTM D 1835 HD 5 which limits total sulfur content to 123 ppmw.
Compliance Status:
X In Compliance: Will you continue to comply up to permit issuance? X YesNo
Not In Compliance: Will you be in compliance at permit issuance?YesNo
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo
Emission Unit ID(s): Boilers 1, 2, 3, & 4
Emission Unit ID(s): Boilers 1, 2, 3, & 4 Applicable Requirement (Description and Citation): Boiler NESHAP - 40 CFR 63.7510 Energy assessment and tune-up.
Applicable Requirement (Description and Citation): Boiler NESHAP - 40 CFR 63.7510 Energy assessment and tune-up. Compliance Methods for the Above (Description and Citation):
Applicable Requirement (Description and Citation): Boiler NESHAP - 40 CFR 63.7510 Energy assessment and tune-up.
Applicable Requirement (Description and Citation): Boiler NESHAP - 40 CFR 63.7510 Energy assessment and tune-up. Compliance Methods for the Above (Description and Citation): Energy Assessment completed. Tune-ups performed on maximum 5 yr intervals
Applicable Requirement (Description and Citation): Boiler NESHAP - 40 CFR 63.7510 Energy assessment and tune-up. Compliance Methods for the Above (Description and Citation): Energy Assessment completed. Tune-ups performed on maximum 5 yr intervals due to installed oxygen sensor.
Applicable Requirement (Description and Citation): Boiler NESHAP - 40 CFR 63.7510 Energy assessment and tune-up. Compliance Methods for the Above (Description and Citation): Energy Assessment completed. Tune-ups performed on maximum 5 yr intervals due to installed oxygen sensor. Compliance Status:

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Emission Unit ID(s): Kilns 1 & 2		
Applicable Requirement (Describe and Cite) Visible emisisons (VE) limits - 40 CFR 49.124. VE must not exceed 20% opacity, averaged over any consecutive 6-minute period, unless the presence of uncombined water, such as steam, is the only reason for the failure of an air pollution source to meet the 20% opacity limit. 49.124(d)(1)&(2). Compliance Methods for the Above (Description and Citation): During normal operation, the kiln vents emit steam, not plumes with opacity. If a kiln emitted smoke, it would mean that there was a fire in the kiln, in which case the response would be immediate.		
Compliance Status:		
X In Compliance: Will you continue to comply up to permit issuance? X YesNo		
Not In Compliance: Will you be in compliance at permit issuance?YesNo		
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo		
Emission Unit ID(s):		
Applicable Requirement (Description and Citation):		
Compliance Methods for the Above (Description and Citation):		
Compliance Status:		
In Compliance: Will you continue to comply up to permit issuance?YesNo		
Not In Compliance: Will you be in compliance at permit issuance?YesNo		
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo		

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

_	
	Emission Unit ID(s): Kilns 1 & 2
	Applicable Requirement (Describe and Cite)
	Particulate Matter (PM) limits - 40 CFR 49.125 PM emissions from source must not exceed an average of 0.1 grains
	per dscf 49.125(d)(3).
	Compliance Methods for the Above (Description and Citation):
	The lumber kilns are not considered sources of particulate matter.
	Compliance Status:
	X In Compliance: Will you continue to comply up to permit issuance? X YesNo
	Not In Compliance: Will you be in compliance at permit issuance?YesNo
	Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo
	Emission Unit ID(s): Kilns 1 & 2
	Applicable Requirement (Description and Citation):
	Plywood and Composite Wood Products MACT (40 CFR Part 63 Subpart DDDD). Section 63.9(b) requires submission of initial notification.
	Compliance Methods for the Above (Description and Citation):
	YFP provided the required initial notification information to EPA in December 2009.
	Compliance Status:
	X In Compliance: Will you continue to comply up to permit issuance? X YesNo
	Not In Compliance: Will you be in compliance at permit issuance?YesNo
	Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Emission Unit ID(s): HF 2, GC 2, SH 1 & 2		
Applicable Requirement (Describe and Cite) Particulate Matter (PM) limits - 40 CFR 49.125 PM emissions from source must not exceed an average of 0.1 grains per dscf 49.125(d)(3).		
Compliance Methods for the Above (Description and Citation): Engineering calculations show that the particulate concentration in these stacks is below 0.1 grain/dscf.		
Compliance Status:		
X In Compliance: Will you continue to comply up to permit issuance? X YesNo		
Not In Compliance: Will you be in compliance at permit issuance?YesNo		
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo		
Emission Unit ID(s): HF 1 & 2, SD 1 & 2, GC 1 & 2, DC 1 & 2, SH 1 & 2, FD 1 & 2		
Applicable Requirement (Description and Citation):		
Visible Emissions (VE) limits - 40 CFR 49.124 VE must not exceed 20% opacity, averaged over any consecutive 6-minute period.		
49.124(2)(1). Compliance Methods for the Above (Description and Citation):		
The reference test method is EPA method 9. 49.124(e)(1).		
Compliance Status:		
X In Compliance: Will you continue to comply up to permit issuance? X YesNo		
Not In Compliance: Will you be in compliance at permit issuance?YesNo		
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo		

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Emission Unit ID(s): HF 1 & 2, SD 1 & 2, GC 1 & 2, DC 1 & 2, SH 1 & 2, FD 1 & 2		
Applicable Requirement (Describe and Cite)		
Fugitive particulate matter limits - 40 CFR 49.126. Take all reasonable precautions to prevent fugitive particulate matter emissions and maintain and operate the source to minimize fugitive particulate matter emissions. 49.126(d)(1).		
Compliance Methods for the Above (Description and Citation):		
Conduct survey and prepare plan per 49.126(e)(1).		
Compliance Status:		
X In Compliance: Will you continue to comply up to permit issuance? X YesNo		
Not In Compliance: Will you be in compliance at permit issuance?YesNo		
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo		
Emission Unit ID(s): General/Source-wide		
Emission Unit ID(s): General/Source-wide Applicable Requirement (Description and Citation):		
Applicable Requirement (Description and Citation): Demolition or renovation activity NESHAP, 40 CFR Part 61, Subpart M, 61.145.		
Applicable Requirement (Description and Citation): Demolition or renovation activity NESHAP, 40 CFR Part 61, Subpart M, 61.145. Inspect for asbestos prior to any demolition or renovation.		
Applicable Requirement (Description and Citation): Demolition or renovation activity NESHAP, 40 CFR Part 61, Subpart M, 61.145.		
Applicable Requirement (Description and Citation): Demolition or renovation activity NESHAP, 40 CFR Part 61, Subpart M, 61.145. Inspect for asbestos prior to any demolition or renovation.		
Applicable Requirement (Description and Citation): Demolition or renovation activity NESHAP, 40 CFR Part 61, Subpart M, 61.145. Inspect for asbestos prior to any demolition or renovation. Compliance Methods for the Above (Description and Citation):		
Applicable Requirement (Description and Citation): Demolition or renovation activity NESHAP, 40 CFR Part 61, Subpart M, 61.145. Inspect for asbestos prior to any demolition or renovation. Compliance Methods for the Above (Description and Citation): Inspect for asbestos prior to any demolition or renovation.		
Applicable Requirement (Description and Citation): Demolition or renovation activity NESHAP, 40 CFR Part 61, Subpart M, 61.145. Inspect for asbestos prior to any demolition or renovation. Compliance Methods for the Above (Description and Citation): Inspect for asbestos prior to any demolition or renovation. Compliance Status:		

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Emission Unit ID(s): General/Source-wide
Applicable Requirement (Describe and Cite) FARR Annual Registration Report - 40 CFR 49.138(f)
Compliance Methods for the Above (Description and Citation): YFP has been submitting annual registration reports to EPA since 2003.
Compliance Status:
X In Compliance: Will you continue to comply up to permit issuance? X YesNo
Not In Compliance: Will you be in compliance at permit issuance?YesNo
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo
Emission Unit ID(s): General/Source-wide
Emission Unit ID(s): General/Source-wide Applicable Requirement (Description and Citation):
Applicable Requirement (Description and Citation):
Applicable Requirement (Description and Citation): Stratospheric ozone and climate protection, 40 CFR Part 82, Subpart F.
Applicable Requirement (Description and Citation): Stratospheric ozone and climate protection, 40 CFR Part 82, Subpart F. Compliance Methods for the Above (Description and Citation):
Applicable Requirement (Description and Citation): Stratospheric ozone and climate protection, 40 CFR Part 82, Subpart F. Compliance Methods for the Above (Description and Citation): YFP outsources all refrigerant services to compliant providers.
Applicable Requirement (Description and Citation): Stratospheric ozone and climate protection, 40 CFR Part 82, Subpart F. Compliance Methods for the Above (Description and Citation): YFP outsources all refrigerant services to compliant providers. Compliance Status:

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Emission Unit ID(s): General/Source-wide
Applicable Requirement (Describe and Cite) Title V/Part 71 permit application/renewal 40 CFR 71.5(a).
Compliance Methods for the Above (Description and Citation): YFP has not submitted a renewal application prior to 6 months of existing permit expiration.
Compliance Status:
In Compliance: Will you continue to comply up to permit issuance?YesNo
X Not In Compliance: Will you be in compliance at permit issuance? X YesNo
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo
Emission Unit ID(s): General/Source-wide
Emission Unit ID(s): General/Source-wide Applicable Requirement (Description and Citation):
Applicable Requirement (Description and Citation):
Applicable Requirement (Description and Citation): Annual fees and compliance certification 40 CFR Part 71.9 Compliance Methods for the Above (Description and Citation):
Applicable Requirement (Description and Citation): Annual fees and compliance certification 40 CFR Part 71.9 Compliance Methods for the Above (Description and Citation): Compliance certification and fees submitted since 2003.
Applicable Requirement (Description and Citation): Annual fees and compliance certification 40 CFR Part 71.9 Compliance Methods for the Above (Description and Citation): Compliance certification and fees submitted since 2003. Compliance Status:

I-COMP

B. SCHEDULE OF COMPLIANCE

section if required to	on if you answered "NO" to any of the questions in section submit a schedule of compliance by an applicable requal consent decrees or administrative orders for this requi	uirement. Please attach
Unit(s)	Requirement	
	mpliance. Briefly explain reason for noncompliance at requirement will not be met on a timely basis:	time of permit issuance or
Narrative Descripti achieving compliand	ion of how Source Compliance Will be Achieved. B	riefly explain your plan for
Schedule of Comp sequence of actions	bliance. Provide a schedule of remedial measures, inclusive with milestones, leading to compliance, including a date	uding an enforceable e for final compliance.
	Remedial Measure or Action	Date to be Achieved
ly complete this section plicable requirement re gress report should sta	IBMISSION OF PROGRESS REPORTS on if you are required to submit one or more schedules of equires submittal of a progress report. If a schedule of clart within 6 months of application submittal and subsequeport may include information on multiple schedules of c	compliance is required, your uently, no less than every six
Contents of Progr	ress Report (describe):	
First Report/	/ Frequency of Submittal	
Contents of Progr	ress Report (describe):	
First Report/	/_ Frequency of Submittal	
	AT THE RESERVE TO THE	

2

I-COMP

3

D. SCHEDULE FOR SUBMISSION OF COMPLIANCE CERTIFICATIONS

Compliance Certification Requirements:

	This section must be completed once by every source. Indicate when you would prefer to submit compliance certifications during the term of your permit (at least once per year).			
	Frequency of submittal Annual Beginning 4 / 1 / 2021			
E.	COMPLIANCE WITH ENHANCED MONITORING & COMPLIANCE CERTIFICATION REQUIREMENTS			
	This section must be completed once by every source. To certify compliance with these, you must be able to certify compliance for every applicable requirement related to monitoring and compliance certification at every unit.			
	Enhanced Monitoring Requirements: X In Compliance Not In Compliance			
	and the state of t			

In Compliance

Not In Compliance

Attachment 2 Example Fee Forms and Emissions Calculations

Table 1 Yakama Forest Products Annual Emission Estimate Input Data

Unit Fee	\$53.81 per ton		
Calender year	. 2019		

Operating Condition	Units	Actual Annual Value
Species Cut		
Grand Fir	mbf/yr	1,110
Douglas Fir	mbf/yr	- 7,693
Pine	mbf/yr	- 36,272
Total	mbf/yr	45,076
	5	
By Products		P
Shavings	bdt/yr	10,640
Hog Fuel	bdt/yr	17,828
Green (Kraft) Chips	bdt/yr	28,617
Dry Chips	bdt/yr	** O
Sawdust	bdt/yr	· 9,002
O 11 14771		
Small Log Mill		
Boiler Operating Hours	hrs/yr/boiler	
Boiler Fuel	gal/yr	0
Large Log Mill		
Boiler Operating Hours (#3)	hrs/yr/boiler	7,544
Boiler Operating Hours (#4)	hrs/yr/boiler	
boiler Operating nours (#4)	ins/yi/boller	7,827
Boiler Fuel (LPG)	gal/yr	2,544,495
Donor I dor (Er O)	gui Ji	2,044,400

Table 2 Yakama Forest Products Annual Emission Estimate Section D Form

Calender year 2019

Emission Unit	Unit ID	NOx	voc	SO2	PM10	Lead	Total
Boiler	Boiler 1	0.0	0.0	0.0	0.0	0.0	0.0
Boiler	Boiler 2	0.0	0.0	0.0	0.0	0.0	0.0
Boiler	Boiler 3	8.3	0.6	0.4	0.4	0.0	9.8
Boiler	Boiler 4	8.3	0.6	0.4	0.4	0.0	9.8
Drying Kiln	Kiln 1		0.0		0.0		0.0
Drying Kiln	Kiln 2		49.7		1.1		50.8
Cyclone	C 1		0.0		0.0		0.0
Cyclone	C 2		2.0		1.9		3.9
Cyclone	C 3		6.0		6.1		12.1
Cyclone	C 4		2.4		2.3		4.7
Hog Fuel H&S	HF 1				0.0		0.0
Hog Fuel H&S	HF 2				0.0		0.0
Sawdust H&S	SD 1				0.0		0.0
Sawdust H&S	SD 2				0.0		0.0
Green Chip H&S	GC 1				0.0		0.0
Green Chip H&S	GC 2				0.0		0.0
Dry Chip H&S	DC 1				0.0		0.0
Dry Chip H&S	DC 2				0.0		0.0
Shavings H&S	SH 1				0.0		0.0
Shavings H&S	SH 2				0.0		0.0
MFA					3.4		3.4
MNFA					3.5		3.5
Unpaved Roads	FD 1				10.9		10.9
Paved Roads	FD 2				9.2		9.2
Subtotals		16.5	61.4	0.8	39.2	0.0	118.0

Table 3 Yakama Forest Products Annual Emission Estimate Section E Form

Calender year	2019)						
				HAP Emi	ssion by	Unit (t/y)		
Name of HAP	CAS No.	Identifi	er	Kiln 1	Kiln 2	Mill	Subtotals	VOC Subtotal
Methanol	67561	HAP	1	0.00	2.03	0.39	2.411	2.4113
Formaldehyde	50000	HAP	2	0.00	0.09		0.087	0.0872
Acetaldehyde	75070	HAP	3	0.00	1.05		1.055	1.0546
Propionaldehyde	123386	HAP	4	0.00	0.06		0.062	0,0617
Acrolein	107028	HAP	5	0.00	0.09		0.087	0,0873
Total				0.0000	3.3161	0.3861	3.702	3.702

Table 4 Yakama Forest Products Annual Emission Estimate Section F Form

Total Criteria Polluta	ants	117.97
Total HAPS		3.70
	Subtotal	121.67
VOC HAPS		3.70
Total Emissions		117.97
	(Rounded)	118

Unit Cost \$53.81

Total Fee \$6,349.58

				Pol	lutants	(tpy)			
Emissions Source	SOx	NOx	CO	VOC	TP	TP PM10	PM25 HAP	Methanol Data Source/Comments	
Actual Emissions (Calendar Ye	ar 2019)							
Boiler	0.8	16.5	9.5	1.3	0.9	0.9	0.9	0.0	AP-42 Section 1.5 (HD-5 LPG)
Kiln				49.7	1.1	1.1		3.3	2.0
Mill				10.4	12.1	10.3	6.0	0.39	0.39
Misc. Non-fugitive Activities					6.8	3.4	1.70		
Misc. Fugitive Activities					7.1	3.5	1.76		
Fugitive Dust					20.0	20.0			
Total	0.8	16.5	9.5	61.4	48.0	39.2	10.4	3.7	2,4
Total Point Source	0.8	16.5	9,5	61.4	20.9	15.7	8.6	3.7	2.4

Boiler	3.6	72.1	41.6	5.5	3.9	3.9	3.9	0.0	AP-42 Section 1.5 (HD-5 LPG)
Kiln				198.2	5.1	5.1		50.9	43.1 Western White Pine (<200 oF) VOC
Mill				16.37	19.1	16.2	9.50	0.61	0.61
Misc. Non-fugitive Activities					26.1	13.1	6.53		
Total Point Source	3.6	72.1	41.6	220.1	54.3	38.3	19.9	51.5	43.7

- 1. Boldface values are point sources.
- 2. All emission factors form existing Title V permit unless otherwise noted on detail worksheets.

Table 6a Yakama Forest Products **Boiler Emissions Calculations - 2019 Actual**

LPG ASTM D 1835 Special Duty (HD-5)

Boiler Input Data

Data for Actual Emissions Calcuation SLM Boiler SLM LLM Boiler LLM Boiler Boiler 2 Total 1 & 2 3 Total 3 & 4 Paramter Units 1 0% 0% 40% 41% Use Factor MMBTU/hr 24.92 24.92 33 33 Size LPG LPG LPG LPG Fuel 123 123 123 123 Sulfur (ppmw) Sulfur (gr/100 ft3) 6.5 6.5 6.5 6.5 #/gallon 4.240 4.240 4.240 4.240 165.5 0.0 165.5 gph 0.0 BTU/# 21,580 21,580 21,580 21,580 0 1,248,824 1,295,671 gal/yr 0 0 2,544,495 Fuel Heat Value Mbtu/gal 91.5 91.5 91.5 91.5 0 Annual Heat Load 0 0 114,267 118,554 232,821 Mmbtu/yr Annual Op hrs/yr 0 0 7,544.0 7,827.0

Actual Emissions

	Pollutants								
Condition	SO2	NOx	СО	VOC	TP	PM10	PM25		
Small Boilers (Boilers 1 a	and 2 combined)								
AP-42 Factor (Section 1.5	5)								
Calc'd Factors	0.1								
(#/1000 gallons)	0.65	13	7.5	1	0.7	0.7	0.7		
Emissions									
(#/yr)	0	0	0	0	0	0	0		
(ton/yr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Value Used (tpy)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

(ton/yr) Value Used (tpy)	0.82 0.82	16.5 16.5	9.5 9.5	1.3 1.3	0.9	0.9	0.9
(#/yr)	1,643	33,078	19,084	2,544	1,781	1,781	1,781
Emissions			40.004	0.544			
(#/1000 gallons)	0.65	13	7.5	1	0.7	0.7	0.7
AP-42 Factor (Section 1.5) Calc'd Factors	0,1						

Notes:

1. No HAPS listed as actual emissions because of no propane HAP emission factors.

Table 6b Yakama Forest Products **Boiler Emissions Calculations - PTE**

LPG ASTM D 1835 Special Duty (HD-5)

Boiler Input Data		Data fo	r Actual Er	nissions Cal	cuation			
	11-9-	SLM Boiler	2000 A 20	Total 1 & 2		LLM Boiler	I	0.4
Paramter	Units	1 1	Boiler 2	TOTAL T & Z		4	Total 3	0. 4
Use Factor		100%	100%		100%	100%		
Size	MMBTU/hr	24.92	24.92		33	33		
Fuel		LPG	LPG		LPG	LPG		
Section 1	Sulfur (ppmw)	123	123		123	123		
	Sulfur (gr/100 ft3)	6.5	6.5		6.5	6.5		
	#/gallon	4.240	4.240		4.240	4.240		
	gph	0.0	0.0		360.7	360.7		
	BTU/#	21,580	21,580		21,580	21,580		
	gal/yr	2,385,784	2,385,784	4,771,567	3,159,344	3,159,344	6,318,6	689
Fuel Heat Value	Mbtu/gal	91.5	91.5	9831.0146.000	91.5	91.5		
Annual Heat Load	Mmbtu/yr	218,299	218,299	436,598	289,080	289,080	578,16	60
Annual Op	hrs/yr	8,760	8,760		8,760	8,760		

Actual Emissions

Pollutants								
SO2	NOx	СО	VOC	TP	PM10	PM25		
d 2 combined)							
0.1								
0.65	13	7.5	1	0.7	0.7	0.7		
3,081	62,030	35,787	4,772	3,340	3,340	3,340		
1.5	31.0	17.9	2.4	1.7	1.7	1.7		
	0.1 0.65 3,081	0.1 0.65 13 3,081 62,030	SO2 NOx CO ad 2 combined) 0.1 0.65 13 7.5 3,081 62,030 35,787	SO2 NOx CO VOC ad 2 combined) 0.1 0.65 13 7.5 1 3,081 62,030 35,787 4,772	SO2 NOx CO VOC TP Ind 2 combined) 0.1 0.65 13 7.5 1 0.7 3,081 62,030 35,787 4,772 3,340	SO2 NOx CO VOC TP PM10 ad 2 combined) 0.1 0.65 13 7.5 1 0.7 0.7 3,081 62,030 35,787 4,772 3,340 3,340		

Total Emissions	3.58	72.1	41.6	5.5	3.9	3.9	3.9
Value Used (tpy)	2.04	41.1	23.7	3.2	2.2	2.2	2.2
(#/yr)	4,080	82,143	47,390	6,319	4,423	4,423	4,423
Emissions							
(#/1000 gallons)	0.65	13	7.5	1	0.7	0.7	0.7
Calc'd Factors	0.1						
AP-42 Factor (Section 1.5)							
Large Boilers (Boilers 3 and	4 combined)					

^{1.} No HAPS listed as actual emissions because of no propane HAP emission factors.

Table 7a
Yakama Forest Products
Kiln Emissions Calculations - Actual Emissions
2019 Actual Emissions

Actual Production

Log Species	Small Log mbf/yr	Log mbf/yr	Total mbf/yr
Grand Fir	0	1,110	1,110
Douglas Fir	0	7,693	7,693
Total Fir	0	8,803	8,803
Pine	0	36,272	36,272

					Р	ollutant					
		Criteria		HAPS							
Component	ponent PM P	PM10	VOC	Total	Methanol	Formaldehyde	Acetaldehyde	Propionaldehyde	Acrolein		
Emission Factor (#/MBF)										
Grand Fir	0.05	0.05	1.0902	0.4956	0.42	0.0163	0.055	0.0018	0.0026		
Douglas Fir	0.05	0.05	1.6969	0.1913	0.117	0.0043	0.0682	0.0007	0.0011		
Pine <200 oF	0.05	0.05	2.345	0.1271	0.074	0.0034	0.042	0.0032	0.0045		
Actual Emissions	(ton/yr)										
Kiln 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Kiln 2	1.1	1.1	49.7	3.3	2.0	0.1	1.1	0.1	0.1		
Total Kiln	1.1	1.1	49.7	3.3	2.0	0.1	1.1	0.1	0.1		

^{1.} Emission factors (PM) from OREGON DEQ AQ-EF02

^{2.} Emission factors (VOC & HAP) from USEPA Region X (David Zehn 2/8/13).

Table 7b Yakama Forest Products Kiln Emissions Calculations

Potential to Emit

Actual Production

Log Species	Small Log mbf/yr	Log mbf/yr	Total mbf/yr
Grand Fir	88,815	116,527	205,342
Douglas Fir	80,618	116,393	197,011
Total Fir	169,433	232,920	402,353
Pine	61,879	77,184	139,063

					P	ollutant			
		Criteria					HAPS		
Component	PM	PM10	VOC	Total	Methanol	Formaldehyde	Acetaldehyde	Propionaldehyde	Acrolein
Emission Factor (#/	MBF)								
Grand Fir	0.05	0.05	1.0902	0.4956	0.42	0.0163	0.055	0.0018	0.0026
Douglas Fir	0.05	0.05	1.6969	0.1913	0.117	0.0043	0.0682	0.0007	0.0011
WW Pine <200 oF	0.05	0.05	2.8505	0.1271	0.074	0.0034	0.042	0.0032	0.0045
Emissions (ton/yr)									
Grand Fir	2.22	2.22	48.41	22.01	18.65	0.72	2.44	0.08	0.12
Douglas Fir	2.02	2.02	68.40	7.71	4.72	0.17	2.75	0.03	0.04
Pine <200 oF	1.55	1.55	88.19	3.93	2.29	0.11	1.30	0.10	0.14
Kiln 2									
Grand Fir	2.91	2.91	63.52	28.88	24.47	0.95	3.20	0.10	0.15
Douglas Fir	2.91	2.91	98.75	11.13	6.81	0.25	3.97	0.04	0.06
Pine <200 oF	1.93	1.93	110.01	4.91	2.86	0.13	1.62	0.12	0.17
DTE Emissions (ton	, frank								
PTE Emissions (ton Kiln 1	2.2	2.2	88.2	22.0	18.7	0.7	2.7	0.1	0.1
Kiln 2			110.0			377735			0.1
	2.9	2.9	N. S.	28.9	24.5	0.9	4.0	0.1	0.2
Total Kiln	5.1	5.1	198.2	50.9	43.1	1.7	6.7	0.2	0.3

^{1.} Emission factors (PM) from OREGON DEQ AQ-EF02

^{2.} Emission factors (VOC & HAP) from USEPA Region X (David Zehn 2/8/13).

Table 8a Yakama Forest Products Mill Emissions Calculations - Summary 2019 Actual Emissions

Loadings Summary

			Smalll Log N	Aill						
Component	Units	Grand Fir	Douglas Fir	Pine	Total	Grand Fir	Douglas Fir	Pine	Total	Total
Percent Species of Total						2.5%	17.1%	80.5%		
Total BF Total Weight	MMBF/yr	0	0	0	0	1,110	7,693	36,272	45,076	45,076
% Hog Fuel	bdtpy	0	0	0	0	439	3,043	14,347	17,828	17,828
% Green Chips	bdtpy	0	0	0	0	705	4,884	23,029	28,617	28,617
% Dry Chips	bdtpy	0	0	0	0	0	0	0	0	0
% Sawdust	bdtpy	0	0	0	0	222	1,536	7,244	9,002	9,002
% Shavings	bdtpy	0	0	0	0	262	1,816	8,562	10,640	10,640

Emissions Summary

Parameter	Units		Cyc	ones						Bins						Mill Total
		C-1	C-2	C-3	C-4	HF1	HF2	SD1	SD2	GC1	GC2	DC1	DC2	SH1	SH2	-
		SLM	LLM	LLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	
		Shavings	Sawdust	Green Chips	Shavings	Hog F	=uel	Sawo	lust	Green	Chips	Dry C	Chips	Shav	rings	
PM	tpy	0.00	2.25	7.15	2.66	0.0000	0.0134	0.0000	0.0034	0.0000	0.0107	0.0000	0.0000	0.0000	0.0080	12.10
PM10	tpy	0.00	1.91	6.08	2.26	0.0000	0.0062	0.0000	0.0016	0.0000	0.0050	0.0000	0.0000	0.0000	0.0037	10.27
PM25	tpy	0.00	1.13	3.58	1.33	0.0000	0.0009	0.0000	0.0002	0.0000	0.0007	0.0000	0.0000	0.0000	0.0005	6.03
voc	tpy	0.00	2.03	5.98	2.43											10.44
Methanol	tpy	0.00	0.07	0.23	0.09											0.39

Table 8b Yakama Forest Products Mill Emissions Calculations - Summary Potential to Emit

Loadings Summary

Co	Component									
%	Hog Fuel									
%	Green Chips									
%	Dry Chips									
%	Sawdust									
	Shavings									

	N.V. C. S.	Smalll Log	Mill						
Units	Grand Fir	Douglas Fir	Pine	Max	Grand Fir	Douglas Fir	Pine	Max	Total
bdtpy	25,577	24,264	15,521	25,577	21,826	30,070	11,131	30,070	55,646
bdtpy	70,102	52,268	62,171	70,102	39,186	38,033	30,986	39,186	109,28
bdtpy	5,086	4,626	3,550	5,086	6,674	6,409	4,430	6,674	11,760
bdtpy	11,633	8,957	10,890	11,633	6,684	7,987	13,178	13,178	24,811
bdtpy	8,226	7,467	5,731	8,226	11,653	11,369	15,344	15,344	23,570

Emissions Summary

Parameter	Units		Cyc	lones		Bins								Mill Total		
		C-1	C-2	C-3	C-4	HF1	HF2	SD1	SD2	GC1	GC2	DC1	DC2	SH1	SH2	
		SLM	LLM	LLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	
		Shavings	Sawdust	Green Chips S	Shavings	Hog F	Fuel	Sawo	dust	Green	Chips	Dry (Chips	Shav	ings	
PM	tpy	2.06	3.29	9.80	3.84	0.0192	0.0226	0.0087	0.0049	0.0526	0.0147	0.0076	0.0100	0.0062	0.0115	19.14
PM10	tpy	1.75	2.80	8.33	3.26	0.0090	0.0105	0.0041	0.0023	0.0245	0.0069	0.0036	0.0047	0.0029	0.0054	16.21
PM25	tpy	1.03	1.65	4.90	1.92	0.0013	0.0015	0.0006	0.0003	0.0035	0.0010	0.0005	0.0007	0.0004	0.0008	9.50
voc	tpy	1.44	3.31	7.77	3.85											16.37
Methanol	tpy	0.07	0.11	0.31	0.12											0.61

YFP AAE 2019 TV Renewal 06.xlsx Mill PTE 5/8/2020 9:59 AM

Table 9 Yakama Forest Products **Cyclone Emissions**

Parameter	Units	Cyclones								
Source ID		C-1	C-2	C-3	C-4					
Location		SLM	LLM	LLM	LLM					
Material		Shavings	Sawdust	Green Chips	Shavings					
Loadings										
Grand Fir	bdtpy	0	222	705	262					
Douglas Fir	bdtpy	0	1,536	4,884	1,816					
Pine	bdtpy	0	7,244	23,029	8,562					
Total	bdtpy	0	9,002	28,617	10,640					
Emission Fa	ctors									
PM	#/bdt	0.50	0.50	0.50	0.50					
PM10	#/bdt	0.43	0.43	0.43	0.43					
PM25	#/bdt	0.25	0.25	0.25	0.25					
voc										
Grand Fir	#/bdt	0.2692	0.2386	0.0734	0.2692					
Douglas Fir	#/bdt	0.2692	0.2386	0.0734	0.2692					
Pine	#/bdt	0.5017	0.5017	0.5017	0.5017					
Methanol	#/bdt	0.016	0.016	0.016	0.016					
Emissions										
PM	t/vr	0.0	2.3	7.2	2.7					
PM10	Vуг	0.0	1.9	6.1	2.3					
PM25	t/yr	0.0	1.1	3.6	1.3					
voc	t/уг	0.0	2.0	6.0	2.4					
Methanol	t/yr	0.000	0.072	0.229	0.085					

Note:

1. All emission factors from Title V Ppermit except VOC emission factors provided by Doug Hardesty 3/9/16

PTE

Parameter	ter Units	Cyclones								
Source ID		C-1	C-2	C-3	C-4					
Location		SLM	LLM	LLM	LLM					
Material		Shavings	Sawdust	Green Chips	Shaving					
Loadings										
Grand Fir	bdtpy	8,226	6,684	39,186	11,653					
Douglas Fir	bdtpy	7,467	7,987	38,033	11,369					
Pine	bdtpy	5,731	13,178	30,986	15,344					
Max	bdtpy	8,226	13,178	39,186	15,344					
Emission Fa	ctors									
PM	#/bdt	0.50	0.50	0.50	0.50					
PM10	#/bdt	0.43	0.43	0.43	0.43					
PM25	#/bdt	0.25	0.25	0.25	0.25					
VOC										
Grand Fir	#/bdt	0.2692	0.2386	0.0734	0.2692					
Douglas Fir	#/bdt	0.2692	0.2386	0.0734	0.2692					
Pine	#/bdt	0.5017	0.5017	0.5017	0.5017					
Methanol	#/bdt	0.016	0.016	0.016	0.016					
Emissions										
PM	t/yr	2.1	3.3	9.8	3.8					
PM10	t/yr	1.7	2.8	8.3	3.3					
PM25	t/yr	1.0	1.6	4.9	1.9					
voc	t/уг	1.4	3.3	7.8	3.8					
Methanol	t/yr	0.066	0.105	0.313	0.123					

Table 10 Yakama Forest Products Bin Emissions

2019 Actual Emissions

Parameter	Units					В	ins				
Source ID		HF1	HF2	SD1	SD2	GC1	GC2	DC1	DC2	SH1	SH2
Location		SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM
Material		Hog	Fuel	Sav	vdust	Gree	n Chips	Dry	Chips	Sha	vings
Loadings	bdtpy	0	17,828	0	9,002	0	28,617	0	0	0	10,640
Emission Fac	ctors										
Filling											
PM	#/bdt	0.00075	0.00075	0.00075		0.00075		0.0015	0.0015		
PM10	#/bdt	0.00035	0.00035	0.00035	Chapter	0.00035	3000	0.0007	0.0007	CHARLEY	YOU Y
PM25	#/bdt	0.00005	0.00005	0.00005	Oh.	0.00005	Chango	0.0001	0.0001	Chaptus.	CHOCK
Truck Loading	1										
PM	#/bdt	0.00075	0.00075	0.00075	0.00075	0.00075	0.00075	0.0015	0.0015	0.0015	0.0015
PM10	#/bdt	0.00035	0.00035	0.00035	0.00035	0.00035	0.00035	0.0007	0.0007	0.0007	0.0007
PM25	#/bdt	0.00005	0.00005	0.00005	0.00005	0,00005	0.00005	0.0001	0.0001	0.0001	0.0001
Emissions											
Filling											
PM	tpy	0.0000	0.0067	0.0000	all a	0.0000	A.	0.0000		.00	æ.
PM10	tpy	0.0000	0.0031	0.0000	100 CJ	0.0000	"90, Cg	0.0000		-190, C.	"190, CV
PM25	tpy	0.0000	0.0004	0.0000	Charace	0.0000	Chaple	0.0000	0.0000	Cheque.	CHARLE
Truck Loading	ı										
PM	tpy	0.0000	0.0067	0.0000	0.0034	0.0000	0.0107	0.0000	0.0000	0.0000	0.0080
PM10	tpy	0.0000	0.0031	0.0000	0.0016	0.0000	0.0050	0.0000	0.0000		0.0037
PM25	tpy	0.0000	0.0004	0.0000	0.0002	0.0000	0.0007	0.0000	0.0000	0.0000	0,0005
Total											
PM	tpy	0.0000	0.0134	0.0000	0.0034	0.0000					0.0080
PM10	tpy	0.0000	0.0062	0.0000	0.0016	0.0000					0.0037
PM25	tpy	0.0000	0.0009	0.0000	0.0002	0.0000	0.0007	0.0000	0.0000	0.0000	0.0005

Note: 1. All emissions factors from Title V Permit

PTE

PIE	120200000000000000000000000000000000000					1.7								
Parameter	Units	SE-27/12/07	Bins											
Source ID		HF1	HF2	SD1	SD2	GC1	GC2	DC1	DC2	SH1	SH2			
Location		SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM			
Material		Hog	Fuel	Sav	vdust	Gree	n Chips	Dry	Chips	Sha	vings			
Loadings	bdtpy	25,577	30,070	11,633	13,178	70,102	39,186	5,086	6,674	8,226	15,344			
Emission Fa	ctors													
Filling														
PM	#/bdt	0.00075	0.00075	0.00075	0	0.00075		0.0015	0.0015		0			
PM10	#/bdt	0.00035	0.00035	0.00035	CAROLE CS	0.00035	3000	0.0007	0.0007	CAROLECY	Sold Co			
PM25	#/bdt	0.00005	0.00005	0.00005	Charles Cy	0.00005	CHARTE	0.0001	0.0001	Chaugh Cy	Chapus			
Truck Loadin	g													
PM	#/bdt	0.00075	0.00075	0.00075	0.00075	0.00075	0.00075	0.0015	0.0015	0.0015	0.0015			
PM10	#/bdt	0.00035	0.00035	0.00035	0.00035	0.00035	0.00035	0.0007	0.0007	0.0007	0.0007			
PM25	#/bdt	0.00005	0.00005	0.00005	0.00005	0.00005	0,00005	0.0001	0.0001	0,0001	0.000			
Emissions														
Filling														
PM	tpy	0.0096	0.0113	0.0044		0.0263		0.0038	0.0050	۵				
PM10	tpy	0.0045	0.0053	0.0020	Charles Cy	0.0123	Hore's	0.0018	0.0023	CHOOL CY	HORE !			
PM25	tpy	0.0006	0.0008	0.0003	Chatelecy	0.0018	Chapter	0.0003	0.0003	Chapte.	Charle			
Truck Loadin	IQ.													
PM	tpy	0.0096	0.0113	0.0044	0.0049	0.0263	0.0147	0.0038	0.0050	0.0062	0.0118			
PM10	tpy	0.0045	0.0053	0.0020	0.0023	0.0123	0.0069	0.0018	0.0023	0.0029	0.0054			
PM25	tpy	0.0006	0.0008	0.0003	0.0003	0.0018	0.0010	0.0003	0.0003	0.0004	0.0008			
Total														
PM	tpy	0.0192	0.0226	0.0087	0.0049	0.0526	0.0147	0.0076	0.0100	0.0062	0.011			
PM10	tpy	0.0090	0.0105	0.0041	0.0023	0.0245	0.0069	0.0036	0.0047	0.0029	0.0054			
PM25	tpy	0.0013			0.0003						0.0008			

Table 11
Yakama Forest Products
Miscellaneious Non-fugitive Activities

2019 Actual Emissions

Parameter	Units	Sawing Inside	Total	
Location		SLM LLN	И	•
Loadings	tpy Logs	0	194,832	
Emission F	actors			
PM	#/tpy logs	0.35	0.35	
PM10	#/tpy logs	0.175	0.175	
PM25	#/tpy logs	0.0875	0.0875	
Control Effic	iency	80%	80%	
Emissions				
PM	t/yr	0.0	6.8	6.8
PM10	t/yr	0.0	3.4	3.4
PM25	t/yr	0.0	1.7	1.7

Note:

PTE

Parameter	Units	Sawing Inside	e Buildings	Total
Location		SLM LLI	М	
Loadings	tpy Logs	322,709	423,400	746,109
Emission F	actors			
PM	#/tpy logs	0.35	0.35	
PM10	#/tpy logs	0.175	0.175	
PM25	#/tpy logs	0.0875	0.0875	
Control Effic	iency	80%	80%	
Emissions				
PM	t/yr	11.3	14.8	26.1
PM10	t/yr	5.6	7.4	13.1
PM25	t/yr	2.8	3.7	6.5

^{1.} All emissions factors from Title V Permit

^{1.} All emissions factors from Title V Permit

Table 12 Yakama Forest Products Miscellaneious Fugitive Activities

2019 Actual Emissions

								Hog Fuel	Handlin	g				
Paramete	Units	Sav	ving	Deba	irking	Conve	yance to	Н	og	Conveya	ince fron	Wind E	rosion	Total
Location		SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	
Loadings	tpy Logs bdt/yr Acres	0	194,832	0	194,832	0	17,828	0	17,828	0	17,828	17	1 - a 7	
Emission		0.005	0.005	0.005	0.005	0.00075	0.00075	0.004	0.004	0.00075	0.00075	0.00	0.20	
PM PM10	#/* #/*	0.035 0.0175					0.00075	100 T T T T T T T T T T T T T T T T T T		0.00075			4°	
PM25	#/*	(0.57)	333 33 5	2000	(0.545)		0.00005		(9)	0.00005				
Control Ef	ficiency	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Emission	s													
PM	t/yr	0.0	3.4	0.0	3.4	0.0000	0.0067	0.0000	0.2139	0.0000	0.0067	0.0032	0.0013	7.1
PM10	t/yr	0.0	1.7	0.0	1,7	0.0000	0.0031	0.0000	0.1070	0.0000	0.0031	0.0016	0.0007	3.5
PM25	t/yr	0.0	0.9	0.0	0.9	0.0000	0.0004	0.0000	0.0535	0.0000	0.0004	0.0008	0.0003	1.8

Note:

PTE

				Hog Fuel Handling										
Paramete	Parameter Units Sav		wing Debarking		Convey	Conveyance to Hog			Conveyance from Wind Erosion Tota			Total		
Location		SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	SLM	LLM	
Loadings	tpy Logs bdt/yr Acres	322,709	423,400	322,709	423,400	25,577	30,070	25,577	30,070	25,577	30,070	17	7	
Emission PM	Factors	0.035	0.035	0.035	0.035	0.00075	0.00075	0.024	n n24	0.00075	0.00075	0.38	0.38	
PM10	#/*	0.0175					0.00035			0.00035				
PM25	#/*	0.00875	0.00875					2277		0.00005	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11 - 22 - 33	720	
Control Ef	ficiency	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Emission	s													
PM	t/yr	5.6	7.4	5.6	7.4	0.0096	0.0113	0.3069	0.3608	0.0096	0.0113	0.0032	0.0013	26.8
PM10	t/yr	2.8	3.7	2.8	3.7	0.0045	0.0053	0.1535	0.1804	0.0045	0.0053	0.0016	0.0007	13.4
PM25	t/yr	1.4	1.9	1.4	1.9	0.0006	0.0008	0.0767	0.0902	0.0006	0.0008	0.0008	0.0003	6.7

^{1.} All emissions factors from Title V Permit

^{2.} Wind erosion area is only for unpave area.

Table 13 Yakama Forest Products Fugitive Dust Emissions Calculations

Paved EF Values
Particle Size (PM10)
Silt Loading 0.016 #/VMT 7.4 gm/m2 Unpaved EF Values Particle Size Silt Content Surface Moisture Precip Days 2.6 #/VMT 8.4 % 0.2 % 200 Days

(Site is watered down 130 days per year)

Employee Vehicles and Product Pickup/Delivery (All paved roads)

Vehicle	Weight (pounds)	veh/c Days/yr	Trips/yr	Dist/RT (ft)	VMT/yr	EF (#/VMT)	PM10 (ton/yr)
Employee Vehicles	5,000	60 34	0 20,400	1,200	4,636	0.0285	0.07
Product Loadout	60,000	48 34	0 16,320	1,200	3,709	1.1843	2.20
	1101.000		in the second			T-4-1 POSSES	7 40

Yard Equipment Inventory

Yard Equipment				0.75		0.8	MEXIMUM	0.5	0.5	į.					
Vehicle	Location		Maximum Hours Per year	Average Hours per year	Maximum Vehicle Speed (mph)	Average Vehicle Speed (mph)	Gross Vehicle Weight (pounds)	Vehicle Empty Weight (pounds)	Gross Weight Laden (pounds)	% Paved	% Unpaved	Annual VMT	VMT Paved	VMT Unpaved	Hours Unpaved
Forklifts	0.000	700	85.55	0.5885			58549250	Mosse	GH.WYAR	20,000	202	299	Tayas		
H-360 HD	SM-3	18	4,320	3,240	4	2	41,200	20,600	30,900	100%	0%	6480			
H-360 HD	PM-3	12	2,880	2,160	4	2	41,200	20,600	30,900	100%	0%	4320			
H-360 HD	PM/KILN-3	16	3,840	2,880	4	2	41,200	20,600	30,900	100%	0%	5760		(
H-360 HD	KILN-	16	3,840	2,880	4	2	41,200	20,600	30,900	100%	0%	5760			
H-280	SM-2	9	2,160	1,620	4	2	34,800	17,400	26,100	100%	0%	3240	3240	(
H-280	PM-2	9	2,160	1,620	4	2	34,800	17,400	26,100	100%	0%	3240	3240) 0
H-190 HD	SHIPPING-3	12	2,880	2,160	4	2	26,300	13,150	19,725	100%	0%	4320	4320		0
H-190 HD	SHIPPING-3	12	2,880	2,160	4	2	26,300	13,150	19,725	100%	0%	4320	4320) 0
H-190 HD	SHIPPING-3	12	2,880	2,160	4	2	26,300	13,150	19,725	100%	0%	4320	4320) 0
H-190 HD	PM-3	11	2,640	1,980	4	2	26,300	13,150	19,725	100%	0%	3960	3960		
H-190 HD	PM-3	11	2,640	1,980	4	2	26,300	13,150	19,725	100%	0%	3960	3960		0
H-190	PM-2	9	2,160	1,620	3	2	26,300	13,150	19,725	100%	0%	2430	2430		
H-190	PM/SHIP-2	10	2,400	1,800	3	2	26,300	13,150	19,725	100%	0%	2700		i i	
H-190	SHIPPING-2	11	2,640	1,980	3	2	26,300	13,150	19,725	100%	0%	2970		ì	
H-155	SM-2	2	480	360	2	1	13,500	6.750	10,125	100%	0%	360		i	
LULL	SM-2	7	240	180	2	- 4	9,000	4,500	6,750	90%	10%	180		18	
TRACTOR	SM-2	3	720	540	7	1	7,500	3,750	5,625	90%	10%	270		27	
Yard Equipment		100	720	010		25	7,000	0,700	0,020	3076	10,6	2.0	240		
CAT 950	MERCH	9	2,160	1,620	6	3	42,520	21,260	31,890	99%	1%	4860	4,811	49	16.2
CAT 950	MERCH	9	2,160	1,620	6	3	42,520	21,260	31,890	99%	1%	4860		49	
CAT 950	MERCH	9	2,160	1,620	6	3	42,520	21,260	31,890	99%	1%	4860		49	
JD-200	MERCH	9	2,160	1,620	1	1	50,000	25,000	37,500	99%	1%	810		T E	
LETRO	P-2	9	2,160	1,620	3	2	90,000	45,000	67,500	1%	99%	2430		2,406	
LETRO	P-2	9	2,160	1,620	3	2	90,000	45,000	67,500	15%	85%	2430			
	P-3		4,320	3,240		3	140,000	70,000						2,066	
LETRO		18			5				105,000	99%	1%	8100		81	
LETRO	P-3	9	1,800	1,350	5	3	140,000	70,000	105,000	99%	1%	3375		34	
JD-744	P-2	9	1,800	1,350	3	2	51,920	25,960	38,940	1%	99%	2025		2,005	
JD-744	P-2	9	1,800	1,350	3	2	51,920	25,960	38,940	1%	99%	2025		2,005	
CAT 968	P-2	9	1,800	1,350	3	2	51,980	25,990	38,985	1%	99%	2025			
CAT 966	P-3	9	1,800	1,350	7	4	52,720	26,360	39,540	99%	1%	4725		47	
CAT 966	P-3	8	1,800	1,350	7	4	52,720	26,360	39,540	99%	1%	4725		47	
HITACHI	P-2	9	1,800	1,350	1	- 1	81,000	40,500	60,750	99%	1%	675		7	
HITACHI	P-2	9	1,800	1,350	1	1	81,000	40,500	60,750	1%	99%	675		668	
MADILL	P-3	9	1,800	1,350	1	1	99,800	49,900	74,850	99%	1%	675		7	
MADILL	P-3	9	1,800	1,350	1	1	99,800	49,900	74,850	1%	99%	675		668	
WATER 1	P-2&3	8	1,040	780	10	5	49,860	24,930	37,395	50%	50%	3900			
WATER 2	P-283	8	1,040	780	10	5	52,180	26,090	39,135	50%	50%	3900		1,950	
WATER 3	P-2&3	8	1,040	780	10	5	51,920	25,960	38,940	50%	50%	3900	1,950	1,950	390
						Averages	51,059	25,529	38,294		Totals	120,240	102,148	18,094	11,070
						Average V	ehicle Weigh	nt ->	31,912	E		Average U	Inpaved Sp	eed>	1.63

Notes: 1. Emission Factors from AP-42 Section 13.2

$$\begin{split} EF_{Powel} &= k \left(\frac{S_{c}}{2} \right)^{0.65} \left(\frac{W}{3} \right)^{1.5} \\ EF_{Openel} &= k \left(\frac{s}{12} \right)^{0.5} \left(\frac{W}{3} \right)^{0.5} \\ \left(\frac{M}{0.2} \right)^{0.5} \\ \end{bmatrix} \frac{S}{15} \frac{(365 - P)}{365} \end{split}$$

where k = PM10 multiplier (#/yr), SL = Paved road silt loading (gm/m2), W = vehicle weight (tons), <math>s = surface material silt content (%), M = soil moisure (%) S = speed (mph), and P = number of days of measurable precipitation.

Variable	Units	Paved	Unpaved
k	#/VMT	0.016	2.6
SL.	gm/m2	7.4	
W	tons	15.96	15.96
s	%		8.4
S	mph		1.63
M	%		0.2
P	Days		200
EF	#/VMT	0.46	0.64
Total miles	miles	120,240	102,146
Emisienne	pounds	55 233	65 542

Total Fugityo Dust !	Emissions	
Yard Paved	55,233 P	ounds
Yard Unpaved	65,542 P	ounds
Employees	0.07 P	ounds
Trucks	2.20 P	ounds
Total	120,777 P	ounds
	60.39 to	ons

D .	st Emissions
Paved	55,236 Pounds
1000.00	27.62 Tons
Unpaved	65,542 Pounds
Manual Control	32.77 Tons
Total	120,777 Pounds
	60.39 Tons

		ProRated Value	
Baseline	135,988	9.15	Paved
Actual	45,076	10.86	Unpaved
ProRate	33%	20.02 Tons	Total
Baseline	135,988	ProRated Value	
PTE	541,416	109.96	Paved
ProRate	398%	130.47	Unpaved
		248.43 Tons	Total
	Actual ProRate Baseline PTE	Actual 45,075 ProRate 33% Baseline 135,988 PTE 541,416	Baseline 135,988 9,15 10.88 20,076 10.88 20,072 Tons

Attachment 3 Maximum Kiln Production Tables

YFP Max Production Rates

Summary

		YFP Production	n Model		
		Grand Fir	Douglas Fir	Pine	n .
Kiln C	apacity				
SLM		88,815	80,618	61,879	
LLM		116,527	116,393	77,184	
Total		205,342	197,011	139,063	
By-pro	oduct	bdt/yr			MAX
SLM	HF	25,577	24,264	15,521	25,577
	SD	11,633	8,957	10,890	11,633
	GC	70,102	52,268	62,171	70,102
	SH	8,226	7,467	5,731	8,226
	DC	5086	4626	3550	5,086
LLM	HF	21,826	30,070	11,131	30,070
	SD	6,684	7,987	13,178	13,178
	GC	39,186	38,033	30,986	39,186
	SH	11,653	11,369	15,344	15,344
	DC	6674	6409	4430	6,674

EPA Pre-draft Inventory								
Grand Fir	Douglas Fir	Pine						
88,753								
116,392	116,392							
205,145	195,430	164,661						
Pre-Draft								
bdt/yr								
4,118								
581								
21,735								
9,936								
6,210								
9,913								
1,398								
52,325								
23,920								
14,950								

Note: The LLM is constrained by steam generation capacity. SLM is constrained by Kiln Capacity.

EXCELL: EPA-MAX PRODUCTION-BY-PRODUCTS COMPARISON- JUN 2015

JUNE 23, 2015

Revised June 26 to add Dry Chip Volume

MAXIMUM ANNUAL CAPACITY PRODUCTION VOLUME CALCULATIONS

DETERMINES THE MAXIMUM LUMBER VOLUMES AND BY-PRODUCTS GENERATION FOR POTENTIAL TO EMIT FOR THE YFP TITLE V PERMIT - 2015

BECK MODEL RUN RESULTS FOR WHITE FIR - June 22, 2015

Note: The LLM is constrainted by steam generation capacity. SLM is constrained by Kiln Capacity.

				Current EPA Permit
SPECIES:	LLM	SLM	TOTAL	Data
WHITE FIR				
MAX LUMBER VOLUME (mbm)	116,527	88,815	205,342	205,145
LOG VOL. USED (mbf)	74,000	54,863	128,863	
Overrun: (mbm/mbf	1.57	1.62	1.59	
By Products:				

	BY-PRODUCT	BECK RUN	EPA
LOCATION	NAME	BDU/yr	BDT/yr
SLM	HF	21,314	25,577
SLM	SD	9,694	11,633
SLM	GC	58,418	70,102
SLM	SH	6,855	8,226
SLM	DC	4,238	5,086
LLM	HF	18,188	21,826
LLM	SD	5,570	6,684
LLM	GC	32,655	39,186
LLM	SH	9,711	11,653
LLM	DC	5,562	6,674

LEGEND:		
SMALL LOG MILL	SLM	
LARGE LOG MILL	LLM	
HOG FUEL	HF	
SAW DUST	SD	
GREEN CHIPS	GC	
SHAVINGS	SH	
Dry Chips	DC	
BONE DRY UNITS	BDU	
BONE DRY TONS	BDT	
BDU X 1.2 = BDT		

EXCELL: EPA-MAX PRODUCTION-BY-PRODUCTS COMPARISON- JUN 2015

JUNE 23, 2015

Revised June 26 to add Dry Chip Volume

MAXIMUM ANNUAL CAPACITY PRODUCTION VOLUME CALCULATIONS

DETERMINES THE MAXIMUM LUMBER VOLUMES AND BY-PRODUCTS GENERATION FOR POTENTIAL TO EMIT FOR THE YFP TITLE V PERMIT - 2015

BECK MODEL RUN RESULTS FOR DOUGLAS FIR - June 22, 2015

Note: The LLM is constrainted by steam generation capacity. SLM is constrained by Kiln Capacity.

			Current EPA Pe	
SPECIES:	LLM	SLM	TOTAL	Data
DOUGLAS FIR				
MAX LUMBER VOLUME (mbm)	116,393	80,618	197,011	195,430
LOG VOL. USED (mbf)	73,919	49,567	123,486	
Overrun: (mbm/mbf	1.57	1.63	1.60	
By Products:				

	BY-PRODUCT	BECK RUN	EPA
LOCATION	NAME	BDU/yr	BDT/yr
SLM	HF	20,220	24,264
SLM	SD	7,464	8,957
SLM	GC	43,557	52,268
SLM	SH	6,223	7,467
SLM	DC	3,855	4,626
LLM	HF	25,058	30,070
LLM	SD	6,656	7,987
LLM	GC	31,694	38,033
LLM	SH	9,699	11,639
LLM	DC	5,341	6,409

LEGEND:		
SMALL LOG MILL	SLM	
LARGE LOG MILL	LLM	
HOG FUEL	HF	
SAW DUST	SD	
GREEN CHIPS	GC	
SHAVINGS	SH	
DRY CHIPS	DC	
BONE DRY UNITS	BDU	
BONE DRY TONS	BDT	
BDU X 1.2 = BDT		

Revised June 26 to add Dry Chip Volume

MAXIMUM ANNUAL CAPACITY PRODUCTION VOLUME CALCULATIONS

DETERMINES THE MAXIMUM LUMBER VOLUMES AND BY-PRODUCTS GENERATION FOR POTENTIAL TO EMIT FOR THE YFP TITLE V PERMIT - 2015

BECK MODEL RUN RESULTS FOR PONDEROSA PINE - June 22, 2015

Note: The LLM is constrainted by steam generation capacity. SLM is constrained by Kiln Capacity.

KILN HOURS			
		Current EPA Perr	
LLM	SLM	TOTAL	Data
77,184	61,879	139,063	164,661
70,597	56,750	127,347	
1.09	1.09	1.09	
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	77,184 70,597	77,184 61,879 70,597 56,750	Curre LLM SLM TOTAL 77,184 61,879 139,063 70,597 56,750 127,347

	BY-PRODUCT	BECK RUN	EPA
LOCATION	NAME	BDU/yr	BDT/yr
SLM	HF	12,934	15,521
SLM	SD	9,075	10,890
SLM	GC	51,809	62,171
SLM	SH	4,776	5,731
SLM	DC	2,958	3,550
LLM	HF	9,276	11,131
LLM	SD	10,982	13,178
LLM	GC	25,822	30,986
LLM	SH	12,787	15,344
LLM	DC	3,692	4,430

LEGEND:		
SMALL LOG MILL	SLM	
LARGE LOG MILL	LLM	
HOG FUEL	HF	
SAW DUST	SD	
GREEN CHIPS	GC	
SHAVINGS	SH	
DRY CHIPS	DC	
BONE DRY UNITS	BDU	
BONE DRY TONS	BDT	
BDU X 1.2 = BDT		